• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 477
  • 237
  • 85
  • 74
  • 30
  • 29
  • 10
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • 6
  • 6
  • Tagged with
  • 1217
  • 231
  • 180
  • 167
  • 162
  • 156
  • 136
  • 134
  • 122
  • 102
  • 102
  • 85
  • 81
  • 81
  • 80
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
311

Investigation of Environmental Impacts on Piezoelectric Weigh-In-Motion Sensing System

Hashemi Vaziri, Shahram January 2011 (has links)
Transportation by trucks plays a major role in North America’s economy. The growth of this industry will increase the loads on existing roads and highways and raises the possibility of overloaded vehicles, which causes significant damage to the pavement and consequently will reduce the lifespan of the roads. Weigh-in-motion (WIM) systems technology helps to address the challenge of overloaded vehicles. This technology provides traffic monitoring, collects data for pavement research and design, and improves the capacity of static weigh station operations. However, there is still a lack of knowledge about the behaviour of WIM sensors installed in different environments, which affects reliable and precise data gathering. More knowledge is required on proper installation procedures, pavement design for WIM systems, choice of sensor type for location, and calibration processes. This research is intended to explore the behaviour of WIM piezoelectric sensors under different loads and environmental conditions. Specifically, the effects of air and pavement temperature, and weight and speed of trucks are examined with respect to the estimation accuracy of WIM sensors. To accomplish this, three WIM systems composed of different piezoelectric transducers were installed at the CPATT test site at the Waste Management facility of the Region of Waterloo in 2007, and two WIM systems were installed between exits 238 and 250 on Highway 401 eastbound near Woodstock, Ontario. It was concluded that the output of the polymer piezoelectric sensor is influenced by temperature and weight factors but not by normally observed vehicle speed differences. While temperature can be compensated for, not enough information has been gathered yet does the same for weight factor. It should be noted that very low speeds (e.g. < 50 km/hr) result in significant errors for all the sensors, so that in congested sections WIM results should be interpreted accordingly. These results will be useful for investigating the effects of environmental conditions on other WIM systems and for predicting the responses of sensors in actual installation environments. This will assist in the recommendation of: (1) alternative and transparent calibration procedures for the WIM sensor systems, (2) and improved benefits of least expensive technology.
312

Piezoelectric Micromachined Ultrasound Transducers for Medical Imaging

Chou, Derrick Ren-yu January 2011 (has links)
<p>Piezoelectric micromachined ultrasound transducer (pMUT) two-dimensional (2D) arrays have been proposed as an alternative to conventional bulk-PZT thickness-mode transducers for high frequency, forward-looking, catheter-based ultrasound imaging of the cardiovascular system. The appeal of pMUTs is based on several key advantages over conventional transducer technologies, including high operational frequencies, small element size, and low cost due to their microelectromechanical system (MEMS) silicon-based fabrication. While previous studies have demonstrated acoustic performance characteristics suitable for ultrasound image formation, pulse-echo B-mode imaging of tissue and tissue-like phantoms using 2D pMUT arrays small enough for forward-looking catheter-based applications have been demonstrated only at Duke University by Dausch et al.</p><p>Having demonstrated the suitability of 2D pMUT arrays for tissue imaging, an important step is to demonstrate effective design control. The frequency of operation is a fundamental component of transducer design. Previous modeling efforts for pMUT vibration have used classical/Kirchoff thin plate theory (CPT) or Mindlin thick plate theory, however pMUTs with geometric dimensions similar to those explored here, have not been modeled with experimental comparison to physical devices.</p><p>It is hypothesized that the frequency of vibration of pMUTs can be predictively modeled based on experimental data from various pMUT configurations. Experimental frequency results were acquired and used to develop an empirical model based on a modified Mindlin thick plate theory. This dissertation presents the development of the frequency design theory culminating in a set of predictive design equations for the frequency of vibration of 2D pMUT arrays aimed at improving their use in high-frequency, forward-looking, catheter-based ultrasound imaging applications.</p> / Dissertation
313

Piezo-on-Silicon Microelectromechanical Resonators

Humad, Shweta 12 July 2004 (has links)
This thesis reports on the use of sputter-deposited zinc-oxide as a transduction mechanism to actuate and sense single crystal silicon (SCS) microelectromechanical (MEMS) resonators. Low frequency prototypes of piezo-on-silicon resonators with operating frequencies in the range of hundreds of kHz were implemented using micromechanical single crystal silicon clamped-clamped beam resonators. The resonators reported here extend the frequency of this technology into very high frequency (VHF range) by using in-plane length extensional bulk resonant modes. This thesis outlines the design, implementation and characterization of high-frequency single crystal silicon (SCS) block resonators with piezoelectric electromechanical transducers. The resonators are fabricated on 4m thick SOI substrates and use sputtered ZnO as the piezo material. The centrally supported block resonators operate in their first and higher order length extensional bulk modes with high quality factor (Q). Measurement results are in good agreement with the developed ANSYS simulations.
314

Developement of Piezo-Hydraulic Actuation Systems Technology for use on a Helicopter Trailing Edge Flap

Herdic, Scott Lucas 28 November 2005 (has links)
The purpose of this study was to create a proof-of-concept piezoelectric actuator system capable of meeting the performance requirements necessary for actuation of a trailing edge flap for a helicopter main rotor blade. Due to extremely small displacements produced by piezoelectric actuators, their output is amplified several times in order to produce the required displacement for this device. The amplification is accomplished in two stages. The first stage, mechanical amplification, uses differential length lever arms to increase the piezoelectric actuator output. The second stage, hydraulic amplification, is coupled to the first stage and uses differential area pistons to further amplify the output of the mechanical amplifier. The actuation systems force and displacement output is characterized based on frequency.
315

Design and Analysis of a Steady-Voltage Piezoelectric Transducer

Tsou, Teng-chieh 23 March 2010 (has links)
As micro-electromechanical systems (MEMS) and smart technologies have been more matured, applications for wider fields are more available. Piezoelectric materials have the property of electromechanical energy conversion, which can convert vibration energy into electrical energy. In this paper, a general concept of the piezoelectric energy conversion is first given. Then, a simple modeling design and analysis for a special transverse mode of the piezoelectric generator called mode 31 is presented. With regard to analytical method, the piezoelectric equivalent circuit model is able to illustrate the important parameters that influence the process how the piezoelectric element generates electrical energy. We may adjust unimorph voltage by controlling the deflection of cantilever beam. And the output power is taken as the indicated parameters for the generator. The energy conversion efficiency of the generator depends on the operation frequency. By using this way, the piezoelectric power generator may be widely applied to environment with both low-frequency and high-frequency vibration range.
316

A Readout Circuit for Piezoelectric Sensors with Digital Range-Enhancement

Huang, Wen-chi 09 August 2010 (has links)
This thesis presents a fully integratable read-out front-end for recording from piezoelectric sensors. It is proposed to periodically reset the input signal to avoid build-up of large voltages across the circuit input terminals. Digitizing the signal after buffering allows removal of the reset steps in the digital domain, thus yielding a faithful representation of the applied input force variation. Different realignment algorithms are presented in this thesis, and the measured results as well as the simulated results from a bench setup are reported which confirm a 52.5 dB dynamic range and recording of frequencies as low as 0.55 Hz. It is also shown the effect of input current leakage is reduced. The proposed system is simulated using the Cadence Spectre simulator, Synopsys HSPICE and National Instruments LabVIEW to confirm its operation. Different realignment algorithms are examined using MATLAB. The read-out circuit is further realized by 0.35 £gm 2-poly 4-metal Taiwan Semiconductor Manufacturing Company (TSMC) process technology. The chip measured results are reported and compared to the simulation. The measured implementation yields a pressure recording range of 0.4 N to 169 N, while consuming 230 £gW from 3 V supplies.
317

Study of double-sided ZnO piezoelectric transducer

Chu, Yu-hsien 15 August 2011 (has links)
This investigation examines a novel means of integrating high-performance ZnO piezoelectric thin films with a flexible stainless steel substrate (SUS304) to fabricate a double-sided piezoelectric transducer. The double-sided piezoelectric transducer is constructed by depositing ZnO piezoelectric thin films on both the front and the back sides of SUS304 substrate. The titanium (Ti) and platinum (Pt) layers were deposited using a dual-gun DC sputtering system between the ZnO piezoelectric thin film and the back side of the SUS304 substrate. Scanning electron microscopy and X-ray diffraction of ZnO piezoelectric films reveal a rigid surface structure and highly c-axis-preferring orientation. To fabricate a transducer with a resonant frequency of about 80 Hz, a cantilever length of 1 cm and a vibration area of 1 cm2 are designed, based on the cantilever vibration theory. The maximum open circuit voltage of the power transducer is approximately 18 V. After rectification and filtering through a 33 nF capacitor, a specific power output of 1.3 £gW/cm2 is obtained from the transducers with a load resistance of 6 M£[.
318

Optimization of a Steady-Voltage Piezoelectric Transducer

Tsai, Chi-Chang 23 September 2011 (has links)
Mechanical energy exists all over the place in our living, and vibration is the most common way of mechanical performance. Micro-electromechanical systems, the application which integrate techniques and combine different field of research, make it possible to convert vibration into electrical energy by using piezoelectric materials; moreover, it become a small piezoelectric power generator. The thesis set up an equivalent circuit model based on the principle of piezoelectric and cantilever mechanics for experimenting the model¡¦s exactness; consequently, model shows that resonant frequency has no effect on generate electricity when amplitude was fixed. The thesis attempts to change the shape of unimorph for enhancing its power generation. By using different sharp of unimorph, the experiment demonstrate that power generation have direct ratio with frequency at amplitude of 5mm. Moreover, different shapes of the unimorph at frequency of 16Hz have different power output; the disparity among power output might up to 1.78 times.
319

Study of thin-film piezoelectric transducers for vibration-energy harvesting

Chang, Wei-Tsai 27 July 2012 (has links)
The piezoelectric transducer for vibration-energy harvesting is constructed of a piezoelectric layer, bottom electrode and a top electrode. In order to obtain an appropriate transducer for the low-frequency operating; environmentally-friendly and long-term, the flexible substrate, the piezoelectric layer, and the additional mass-loading (tip mass) have been investigated thoroughly. This study investigates the feasibility of a high-performance ZnO and AlN based piezoelectric transducer for vibration-energy harvesting applications. Firstly, the piezoelectric transducer is constructed of a Cu/ZnO/ITO/PET structure. Both scanning electron microscopy and X-ray diffraction indicate that, among the favorable characteristic of the ZnO piezoelectric film include a rigid surface structure and a high c-axis preferred orientation. Hence, an open circuit voltage of 1.87 V for the ZnO piezoelectric transducer at a vibration frequency of 100 Hz is obtained by an oscilloscope. After rectifying and filtering, the output power of the generator exhibits an available benefit of 0.07 £gW/cm2 with the load resistance of 5 M£[. Secondly, this investigation introduces novel means of integrating high-performance piezoelectric transducers using single-sided ZnO and AlN films with a flexible stainless steel substrate (SUS304). Hence, the SUS304 substrate exhibits the long-term stability under vibration. The single-sided ZnO and AlN transducers are deposited on the SUS304 substrate at a temperature of 300 oC by an RF magnetron sputtering system. Scanning electron microscopy and X-ray diffraction of piezoelectric films reveal a rigid surface structure and a high c-axis-preferred orientation. A mass loading at the front-end of the cantilever is critical to increase the amplitude of vibration and the power generated by the piezoelectric transducer. The open circuit voltage of the single-sided ZnO power generator is 10.5 V. After rectification and filtering through a capacitor with a capacitance of 33 nF, the output power of the single-sided ZnO generators exhibited a specific power output of 1.0 £gW/cm2 with a load resistance of 5 M£[. Finally, this investigation fabricates double-sided piezoelectric transducers for harvesting vibration-power. The double-sided piezoelectric transducer is constructed by depositing piezoelectric thin films on both the front and the back sides of SUS304 substrate. The titanium (Ti) and platinum (Pt) layers were deposited using a dual-gun DC sputtering system between the piezoelectric thin film and the back side of the SUS304 substrate. Scanning electron microscopy and X-ray diffraction of piezoelectric films reveal a rigid surface structure and highly c-axis-preferring orientation. The maximum open circuit voltage of the double-sided ZnO power transducer is approximately 18 V. After rectification and filtering through a 33 nF capacitor, a specific power output of 1.3 £gW/cm2 is obtained from the double-sided ZnO transducer with a load resistance of 6 M£[. The variation of the power output of ¡Ó0.001% is obtained after 24-hour continuous test. The maximum open circuit voltage of the double-sided AlN power transducer is approximately 20 V. After rectification and filtering through a 33 nF capacitor, a specific power output of 1.462 £gW/cm2 is obtained from the double-sided AlN transducer with a load resistance of 7 M£[.
320

Controlling Performance of Laminated Composites Using Piezoelectric Materials

Hasan, Zeaid 2010 December 1900 (has links)
Composite materials are increasingly used in aerospace, underwater, and automotive structures. Their use in structural applications is dictated by the outstanding strength and stiffness while being lightweight in addition to their flexibility in tailoring the desired performance in the design of structures. The present study focuses on the failure analysis and shape control of smart composite laminates under coupled hygrothermal, electric and mechanical stimuli. A linear thermo-electro-elastic constitutive model for transversely isotropic materials is used for each ply in the composite laminates. The first-ply failure and ultimate laminate failure criteria of composite laminates are used to predict the failure stress and mode of the composite laminate where we incorporate various commonly known macroscopic failure criteria including Tsai-Hill, Tsai Wu, maximum stress and maximum strain for each lamina. We study the use of piezoelectric materials such as lead zirconate titanate (PZT) and piezoelectric fiber composites as actuators for controlling deformation in composite laminates; this study focuses on bending deformation. The purpose is to minimize unwanted deformation, such as the one due to hygrothermal effect, by applying counter deformation to avoid failure in such composite laminates. In addition, analysis based on the Classical Laminate Theory (CLT) is performed for Carbon/Epoxy (AS4/3501-6) thin laminate with stacking sequence [90/45/-45/0]s under uniaxial and biaxial in-plane loading. One of the major types of failure in smart structures is caused by debonding of the actuator from the host structure which is caused by the high stress discontinuity between the interface of the host structure and the active part. By using embedded actuators, such that the active part is incorporated into one of the layers of the composite beam during the manufacturing process, the stress concentration effect can be reduced while obtaining similar actuation values. Moreover, a control algorithm is proposed that enables the composite laminate to overcome the failure load by using piezoelectric materials where a counter electric voltage could be applied which prevents failure from occurring. Furthermore, computer software called “Hyper Composite” was developed using Action Script® and Adobe Flash® in order to perform stress and failure analysis for general composite laminates. Several carpet plots were also generated to show the interacting behavior of two independent variables such as Young’s modulus, Poisson’s ratio, shear modulus and the coefficient of thermal and moisture expansion at different percentile constitutions for the laminate different plies. This computer software is useful for estimating overall properties of smart composite laminates in designing smart composite structures.

Page generated in 0.0248 seconds