• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 477
  • 237
  • 85
  • 74
  • 30
  • 29
  • 10
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • 6
  • 6
  • Tagged with
  • 1217
  • 231
  • 180
  • 167
  • 162
  • 156
  • 136
  • 134
  • 122
  • 102
  • 102
  • 85
  • 81
  • 81
  • 80
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
341

Piezoelecytric pump design and system dynamic model

Oates, William Sumner 05 1900 (has links)
No description available.
342

Properties and Characterisation of Sputtered ZnO

Schuler, Leo Pius January 2008 (has links)
The aim of this work was the study of sputtered zinc oxide (ZnO) film deposition, the optimisation and characterisation of film properties and applications as a sensing material. In recent years there has been increased interest in ZnO in terms of its potential applications as piezoelectric films (or coatings) for surface acoustic wave devices (SAW), for IR and visible light emitting devices and UV sensing. The electrical, optoelectronic and photochemical properties of undoped ZnO have resulted in its use for solar cells, transparent electrodes and blue/UV light emitting devices. ZnO is a unique material that exhibits both semiconducting and piezoelectric properties. In the past decade, numerous studies have been made on both production and application of one-dimensional ZnO. Compared with other semiconductor materials, ZnO has a higher exciton binding energy of 60 meV, which gives it a high potential for room temperature light emission, is more resistant to radiation, and is multifunctional as it has piezoelectric, ferroelectric, and ferromagnetic properties. ZnO-based semiconductor and nanowire devices are also promising for the integration on a single chip. So far, the various applications of ZnO nanomaterials such as biosensors, UV detectors and field emission displays are being developed. In this work, ZnO was sputtered using both DC and RF magnetron sputtering. Reactive DC sputtering was performed with a Zn target and oxygen plasma, while RF sputtering was performed with a ZnO target. Comparisons between films deposited under different conditions on different substrates were employed to assess film properties. Several experiments were performed on as-grown films as a control for subsequence treatments, other samples were post-annealed in N2 at temperatures up to 1200 ºC, the highest reported annealing temperature and the quality of the deposited films was determined using PL, RBS, XRD, SEM and AFM. The piezoelectric properties (d33) of selected films were determined using single beam interferometry, double beam interferometry, and for the first time, using piezoelectric force microscopy (PFM). It was found that DC sputtered films yielded better quality films as evident by PL and XRD analysis and higher piezoelectric response than RF sputtered films. Films deposited using DC sputtering on Si substrates and followed by post-annealing in N2 atmosphere at 1100 ºC showed the highest recorded PL response, while films deposited on sapphire showed good PL response without any need for post-annealing. The d33 of selected films were determined first using single beam interferometry and inflated results were reported, caused by sample bending/buckling. Double beam interferometry results confirmed d33 values in the range of 3.3 to 4.3 pm/V. Piezoelectric force microscopy (PFM) which is based on AFM, was employed to investigate the local electromechanical (piezoelectric) properties of the ZnO films. UV sensing was demonstrated using Schottky contacts and SAW devices on ZnO deposited on Si and post-annealed. In the first instance, Schottky contacts were fabricated on the films and the I V characteristics determined under exposure of various light sources. The current increased up to one order of magnitude during exposure with a halogen light bulb, which is known to emit energy in the UV band. Another experiment was performed using surface acoustic wave (SAW) devices which were fabricated on the films and interrogated using a network analyser. These SAW devices contain an interdigitated transducer and two reflectors each. The signals sent back from the two reflectors were analysed under various light conditions and gave lower readings during exposure to UV light. In order to enable device fabrication of UV sensors a novel “super coating”, achieving both optimised PL and d33 properties, was designed, fabricated and tested. The structure is based on optically transparent Quartz substrate. During this experiment the first DC sputtered coat was optimised to have high PL response by post-annealing at 900 ºC. Afterwards, the second coat was left as-sputtered in order to have highly piezoelectric properties. Preliminary analysis using XRD showed two peaks corresponding to the annealed and not annealed coat, which suggest the super coating combines the properties of the two individual films. This configuration has the potential to be used as UV sensing material and as piezoelectric substrate for SAW devices.
343

MODELING AND FABRICATION OF LIGHTWEIGHT, DEFORMABLE MIRRORS SUBJECTED TO DISCRETE LOADING

Roche, Michael E. 01 January 2001 (has links)
The push towards larger diameter space telescope mirrors has caused the space industry to look at lightweight, deformable alternatives to the traditional monolithic mirror. One possible solution to the dilemma is to use the piezoelectric properties of certain materials to create a lightweight, deformable mirror. Current piezoelectric deformable mirror designs use individual actuators, creating an immensely complex system as the mirrors increase in size. The objective of this thesis is to aid in the design and development of lightweight, deformable mirrors for use in space based telescopes. Two topics are considered to aid this development. A doubly curved, lightweight, bimorph mirror is investigated. The fabrication method entails forming a thin film piezoelectric polymer into a doubly curved shape using a specially designed forming machine. The second topic entails the finite element modeling of a composite mirror substrate with a piezoceramic actuator backing. The model is generated using a meshing program designed to generate off-centered spot loads of electric potential. These spot loads simulate the actuation due to an electron gun. The effects of spot location and size on mirror deformation are examined.
344

CHARACTERIZATION OF AN ELECTRON GUN CONTROLLED MULTIPLE SPATIAL REGION PIEZOELECTRIC THIN FILM

Macke, Benjamin Tyler 01 January 2003 (has links)
Piezoelectric bimorph thin films may hold solutions for many future applications, such as lightweight deployable mirrors and inflatable struts. Non-contact actuation by an electron gun has shown promise in preventing issues that arise from attaching many wire leads to a thin film surface. This study investigates piezoelectric bimorph thin film response to electron gun actuation when covered with multiple spatial regions of control. Desired parameter ranges are found that will lead to predictable control under certain circumstances. Under such circumstances, film response is influenced almost solely by the primary electrons incident on the film, and secondary electrons have negligible effect. Such information is vital before attempting closed loop control of a thin-film piezoelectric mirror with multiple electrodes.
345

AUTOMATIC DETECTION OF SLEEP AND WAKE STATES IN MICE USING PIEZOELECTRIC SENSORS

Medonza, Dharshan C. 01 January 2006 (has links)
Currently technologies such as EEG, EMG and EOG recordings are the established methods used in the analysis of sleep. But if these methods are to be employed to study sleep in rodents, extensive surgery and recovery is involved which can be both time consuming and costly. This thesis presents and analyzes a cost effective, non-invasive, high throughput system for detecting the sleep and wake patterns in mice using a piezoelectric sensor. This sensor was placed at the bottom of the mice cages to monitor the movements of the mice. The thesis work included the development of the instrumentation and signal acquisition system for recording the signals critical to sleep and wake classification. Classification of the mouse sleep and wake states were studied for a linear classifier and a Neural Network classifier based on 23 features extracted from the Power Spectrum (PS), Generalized Spectrum (GS), and Autocorrelation (AC) functions of short data intervals. The testing of the classifiers was done on two data sets collected from two mice, with each data set having around 5 hours of data. A scoring of the sleep and wake states was also done via human observation to aid in the training of the classifiers. The performances of these two classifiers were analyzed by looking at the misclassification error of a set of test features when run through a classifier trained by a set of training features. The best performing features were selected by first testing each of the 23 features individually in a linear classifier and ranking them according to their misclassification rate. A test was then done on the 10 best individually performing features where they were grouped in all possible combinations of 5 features to determine the feature combinations leading to the lowest error rates in a multi feature classifier. From this test 5 features were eventually chosen to do the classification. It was found that the features related to the signal energy and the spectral peaks in the 3Hz range gave the lowest errors. Error rates as low as 4% and 9% were achieved from a 5-feature linear classifier for the two data sets. The error rates from a 5-feature Neural Network classifier were found to be 6% and 12% respectively for these two data sets.
346

Micromachined piezoelectric-on-silicon platform for resonant sensing and energy harvesting

Fu, Jenna L. 27 August 2014 (has links)
A microelectromechanical systems (MEMS)-based environmental monitoring platform was presented in this dissertation. All devices were realized using thin-film piezoelectric-on-substrate (TPoS) technology, which provides a path to integrate various functionalities on a single substrate with MEMS components. TPoS resonators exhibit high quality factors (Qs) in air and are capable of low-power oscillator implementation, which further qualifies such a platform for mobile and portable systems. To validate the TPoS platform, gravimetric humidity sensing was demonstrated with thermally-corrected output by an uncoated "reference" temperature sensor. Also presented were TPoS sensors for toluene and xylene, which are pollutants of great importance for indoor and outdoor air quality as well as health screenings. Silicon dual-mode resonators and oscillators for self-temperature sensing were also explored. Dual-mode thermometry exploits the inherent frequency-temperature dependence of silicon to accurately and locally measure device temperature, forming an essential building block of highly stable oscillators and sensors. Multi-axis piezo-on-Si kinetic energy harvesting (KEH) devices with integrated frequency-upconverting transducers were also introduced. Devices were micromachined on the same substrate as TPoS resonant sensors and have an individual volume in mm3, enabling applications in wireless autonomous sensor nodes. In remote locations where continuous operation may be required, TPoS energy harvesters can provide battery replacement or recharging alternatives that do not increase overall system size.
347

Design, Modelling, Fabrication & Testing of a Miniature Piezoelectric-based EMF Energy Harvester

Pollock, Tim 14 May 2014 (has links)
Wireless sensing applications have extended into power transmission line monitoring applications. Minimal power consumption of sensor electronics have enabled kinetic energy harvesting systems to provides a means of self sustainability in the form of parasitic energy harvesting from power transmission lines. With this goal in mind, a miniature piezoelectric bimorph cantilever harvester has been developed using a magnetic tip mass which interacts with the oscillating magnetic flux surrounding power transmission wires. The focus of this thesis is develop an analytical model which can be used to optimize the amount of piezoelectric material to support sensory electronics. Special emphasis has also been placed on magnet orientation and geometry to ensure optimal magnetic flux interaction between input and output mechanisms. A single prototype harvester is designed with an arbitrary piezoelectric material length and experimentally validated at different conductor wire currents. The analytical model shows excellent agreement in frequency prediction for the prototype tested. Two damping techniques are used to experimentally extract modal damping ratios to predict peak mechanical and electrical responses at resonance frequencies. The miniature prototype design is less than 30 mm in length with only 10 mm piezoelectric material to produce a total volume of 154 10^-12 cm^3. The power output is measured at 174.1 W of power when positioned over top a 10 AWG copper conductor a distance of 6 mm with approximately 16 Amps of current passing though the conductor.
348

Investigation of Environmental Impacts on Piezoelectric Weigh-In-Motion Sensing System

Hashemi Vaziri, Shahram January 2011 (has links)
Transportation by trucks plays a major role in North America’s economy. The growth of this industry will increase the loads on existing roads and highways and raises the possibility of overloaded vehicles, which causes significant damage to the pavement and consequently will reduce the lifespan of the roads. Weigh-in-motion (WIM) systems technology helps to address the challenge of overloaded vehicles. This technology provides traffic monitoring, collects data for pavement research and design, and improves the capacity of static weigh station operations. However, there is still a lack of knowledge about the behaviour of WIM sensors installed in different environments, which affects reliable and precise data gathering. More knowledge is required on proper installation procedures, pavement design for WIM systems, choice of sensor type for location, and calibration processes. This research is intended to explore the behaviour of WIM piezoelectric sensors under different loads and environmental conditions. Specifically, the effects of air and pavement temperature, and weight and speed of trucks are examined with respect to the estimation accuracy of WIM sensors. To accomplish this, three WIM systems composed of different piezoelectric transducers were installed at the CPATT test site at the Waste Management facility of the Region of Waterloo in 2007, and two WIM systems were installed between exits 238 and 250 on Highway 401 eastbound near Woodstock, Ontario. It was concluded that the output of the polymer piezoelectric sensor is influenced by temperature and weight factors but not by normally observed vehicle speed differences. While temperature can be compensated for, not enough information has been gathered yet does the same for weight factor. It should be noted that very low speeds (e.g. < 50 km/hr) result in significant errors for all the sensors, so that in congested sections WIM results should be interpreted accordingly. These results will be useful for investigating the effects of environmental conditions on other WIM systems and for predicting the responses of sensors in actual installation environments. This will assist in the recommendation of: (1) alternative and transparent calibration procedures for the WIM sensor systems, (2) and improved benefits of least expensive technology.
349

Implicit coupled constitutive relations and an energy-based method for material modelling

Man, Hou Michael, Mechanical & Manufacturing Engineering, Faculty of Engineering, UNSW January 2009 (has links)
The contributions of this thesis are an implicit modelling method for the coupled constitutive relations and an energy-based method for material modelling. The two developed methods utilise implicit models to represent material constitutive relations without the requirement of physical parameters. The first method is developed to model coupled constitutive relations using state-space representation with neural networks. State-space representation is employed to express the desired relations in a compact fashion while simultaneously providing the capability of modelling rate- and/or path-dependent behaviour. The employment of neural networks with the generalised state-space representation results in a single implicit model that can be adapted for a broad range of constitutive behaviours. The performance and applicability of the method are highlighted through the applications for various constitutive behaviour of piezoelectric materials, including the effects of hysteresis and cyclic degradation. An energy-based method is subsequently developed for implicit constitutive modelling by utilising the energy principle on a deformed continuum. Two formulations of the proposed method are developed for the modelling of materials with varying nature in directional properties. The first formulation is based on an implicit strain energy density function, represented by a neural network with strain invariants as input, to derive the desired stress-strain relations. The second formulation consists of the derivation of an energy-based performance function for training a neural network that represents the stress-strain relations. The requirement of deriving stress is eliminated in both formulations and this facilitates the use of advanced experimental setup, such as multi-axial load tests or non-standard specimens, to produce the most information for constitutive modelling from a single experiment. A series of numerical studies -- including validation problems and practical cases with actual experimental setup -- have been conducted, the results of which demonstrate the applicability and effectiveness of the proposed method for constitutive modelling on a continuum basis.
350

Control of Structures Using SMA Wires and Piezoelectric Patches

Hariri, Mohammed, not supplied January 2009 (has links)
Smart materials and structures systems are increasingly being developed to handle more complex problems. One of the main research schemes is the augmentation of the control authority of the smart actuators used in such systems. The augmentation can be obtained by constructing hybrid and multi- smart materials actuator systems and/or by the optimization of the location and orientation of those actuators. In the first part of this study, the alteration of the natural frequency of composite structures using Nitinol-based Shape Memory Alloy (SMA) wires will be presented using the analyses of strain energy perturbations on a plate. These governing strain equations were solved analytically and numerically to show the effect of point forces acting in a distributive manner and the subsequent effect it has on the plate's stiffness and hence it's natural frequency. In the second part of the thesis, a more complex loading condition is considered to investigate piezoceramic actuator control authority in relation to wing flutter control. The advancement in the application of active material induced-strain actuation such as piezoelectric materials in suppression of structural vibrations drew wide interest in its use for wing flutter control. Higher flutter speed and hence wider operating envelope was achieved by delaying the coalescence of the eigenvalues for plunge and twist modes. . This delay is obtained by adding more strain energy to the system as a result of the activation of the piezoelectric actuators. Most of the studies done were by controlling the plunge/bending motion, where the piezoelectric actuators are bonded longitudinally to produce bending moments. In this study, the control of the pitch/twisting motion was investigated and it showed better control of flutter by using simultaneous multi-actuations compared to single piezo actuations. It was shown that within the scope of the angular orientations of the piezoelectric patches investigated in this study, piezoelectric patches oriented about +150 from the beam's longitudinal ax is resulted in the most optimal piezo-configuration. This was corroborated by both the numerical flutter speed and actuator moment evaluations. In addition, the orientation of the piezoelectric patches was shown to significantly affect the pitch angle of the beam relative to each other. The damping ratio was also investigated and this showed greater instability for piezoelectric patches oriented at negative angles, thus further supporting the finding of the aforementioned optimal orientation of +150. These findings confirmed the dominance of the base (closest to the fixed portion of the beam) piezo when actuated with other piezos.

Page generated in 0.0365 seconds