• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 4
  • 3
  • 1
  • 1
  • Tagged with
  • 27
  • 19
  • 13
  • 10
  • 8
  • 7
  • 7
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Human models of Parkinson's disease present impaired autophagy, mitophagy and mitochondria energy metabolism / パーキンソン病のヒト疾患モデルは、オートファジー、ミトファジー、およびミトコンドリアエネルギー代謝の障害を呈する

ARIAS, Jonathan 23 January 2018 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(生命科学) / 甲第20820号 / 生博第389号 / 新制||生||51(附属図書館) / 京都大学大学院生命科学研究科高次生命科学専攻 / (主査)教授 米原 伸, 教授 垣塚 彰, 教授 HEJNA James / 学位規則第4条第1項該当 / Doctor of Philosophy in Life Sciences / Kyoto University / DFAM
12

Mitochondria-Mediated Regulation of Endothelial Cell Phenotype under Different Flow Patterns: Molecular Insights into Benefits of Exercise in Prevention of Vascular Disease

Hong, Soongook January 2022 (has links)
Chapter 1: Molecular Mechanism of Mitochondrial Fragmentation and Glucose Metabolism under Disturbed Flow in Endothelial Cells: Focus on the Role of Dynamin-Related Protein 1. The luminal surface of the endothelium is continually exposed to dynamic blood flow patterns that is known to alter immunometabolic phenotypes of the endothelial cells (ECs). Recent literature reported that inhibition of the metabolic reprogramming to glycolysis or enhancement of oxidative phosphorylation (OXPHOS) is considered as an effective strategy to prevent EC proinflammatory activation and eventually the progression of vascular diseases. Endothelial mitochondria are highly dynamic organelles playing versatile roles in maintaining endothelial cell homeostasis working as bioenergetic, biosynthetic, and signaling organelles. The balance between fusion and fission processes modulates mitochondrial network, which is essential for maintaining mitochondrial homeostasis. Disruption of the orchestrated balance, especially toward excessive fission resulting in fragmented and dysfunctional mitochondria, has been shown to be associated with atheroprone phenotypes of ECs. However, there is a key knowledge gap with respect to morphology of EC mitochondria under different flow conditions and its role on EC immunometabolic phenotypes.In chapter 1, the purpose of this study was to investigate the effect of different flow patterns on mitochondrial morphology in ECs and its implication in immunometabolic endothelial phenotype. The overarching hypothesis of the Chapter 1 was that disturbed flow (DF) will increase mitochondrial fragmentation, which will facilitate glycolysis and inflammatory activation in ECs. In the study, mitochondrial morphology was analyzed in ECs at multiple segments of the aorta and arteries in EC-specific photo-activatable mitochondria (EC-PhAM) mice. Increased mitochondrial fragmentation was observed at atheroprone regions (e.g., lesser curvature of the aortic arch, LC) with increased dynamin-related protein 1 (Drp1) activity, compared with the atheroprotective regions (e.g., thoracic aorta, TA). The atheroprone regions also showed a higher level of endothelial activation and glycolysis. Carotid artery partial ligation surgery, as a surgical model of DF, significantly induced mitochondrial fragmentation with elevated Drp1 activity and increased EC activation. in vitro experiments recapitulated in vivo observations. Inhibition of Drp1 activity by mdivi-1 attenuated the DF-induced atheroprone EC phenotypes, showing the close relationship between mitochondrial morphology and atheroprone phenotypes of ECs. As for the molecular mechanism, hypoxia-inducible factor 1 α (HIF-1α) stabilization and its nuclear translocation was significantly increased under DF, which was attenuated by mdivi-1 treatment. Mitochondrial reactive oxygen species (mtROS) and succinate, which are known to reduce prolyl hydroxylase domain 2 (PHD2) activity thereby increasing HIF-1α stabilization, were significantly elevated under DF, but those were attenuated by mdivi-1 treatment. Finally, a 7-week voluntary wheel-running exercise training significantly decreased mitochondrial fragmentation with a down-regulation of VCAM-1 expression at the LC. In conclusion, our data suggest that DF induces mitochondrial fragmentation with increased Drp1 activity, which is associated with an atheroprone EC phenotype. In addition, regular practice of aerobic exercise reduces mitochondrial fragmentation and prevents ECs from an atheroprone endothelial phenotype at the atheroprone regions. Chapter 2: Molecular Mechanisms for Unidirectional Flow (UF)/Exercise-Induced improvement of Mitochondrial Integrity: Focus on phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1) /PARKIN-Dependent Mitochondrial Autophagy (Mitophagy) Phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1) is an essential molecule in the mitophagy process and known to act as a cytoprotective protein involved in several cellular mechanisms in mammalian cells. It has been documented that the loss of PINK1 expression in mice and various cell types enhance susceptibility to stress-induced cell damage, while the overexpression of PINK1 significantly attenuates stress-induced mitochondrial and cellular dysfunction.In chapter 2, the purpose of this study was to investigate PINK1 expression and its subcellular localization under an exercise-mimic laminar shear stress (LSS) condition in human primary endothelial cells and in exercizing mice, and its implications on endothelial homeostasis and cardiovascular disease (CVD) prevention. The overarching hypothesis of the Chapter 2 was that unidirectional flow (UF) will increase cytosolic PINK1 expression through which UF-preconditioned ECs will be more protective against an accumulation of dysfunctional mitochondria via a greater mitophagy induction. In this study, we measured the full-length PINK1 (FL-PINK1) mRNA and protein expression levels in ECs under unidirectional laminar shear stress (LSS). LSS significantly elevated both FL-PINK1 mRNA and protein expressions in ECs. Mitochondrial fractionation assays showed a decrease in FL-PINK1 accumulation in the mitochondria with an increase in the cytosolic FL-PINK1 level under LSS. Confocal microscopic analysis confirmed these subcellular localization patterns suggesting downregulation of mitophagy induction. Indeed, mitophagy flux was decreased under LSS, determined by a mtKeima probe. Mitochondrial morphometric analysis and mitochondrial membrane potential determined by tetraethylbenzimidazolylcarbocyanine iodide (JC-1) showed mitochondrial elongation and increased mitochondrial membrane potential under LSS respectively, suggesting that an elevation of cytosolic PINK1 is not related to an immediate induction of mitophagy. However, increased cytosolic PINK1 elevated mitophagic sensitivity toward dysfunctional mitochondria in pathological conditions. Preconditioned ECs with LSS showed lower mtDNA lesions under angiotensin II stimulation. Moreover, LSS-preconditioned ECs showed rapid Parkin recruitment and mitophagy induction in response to mitochondrial toxin (i.e., carbonyl cyanide chlorophenylhydrazone, CCCP) treatment compared to the control. We measured PINK1 expression at ECs of the thoracic aorta in exercised mice, a physiological LSS-enhanced model, which was significantly elevated compared to sedentary animals. In addition, exercise-preconditioned mice were more protective to angiotensin II-induced mtDNA lesion formation in the mouse abdominal aorta than sedentary mice, suggesting a potential protective mechanism of exercise in a PINK1-dependent manner. In conclusion, LSS increases a cytosolic pool of FL-PINK1, which may elevate the mitophagic sensitivity toward dysfunctional mitochondria or activate other cytoprotective mechanisms in ECs. Our data suggest that exercise may support mitochondrial homeostasis in vascular ECs by enhancing PINK1-dependent cell protection mechanisms. / Kinesiology
13

探討紫蘇對百草枯引起果蠅毒害之影響 / Effects of Perilla on Paraquat-induced Toxicity in Drosophila

陳玫汝 Unknown Date (has links)
帕金森氏症是現今常見的神經退化性疾病,其特徵主要表現在運動功能上的缺失包含靜止時振顫、步態不穩及肢體僵硬等特徵。而基因研究指出當PTEN-induced putative kinase 1 (PINK1)及Parkin基因發生突變可能會導致粒腺體功能失常,進而導致帕金森氏症之神經退化性疾病,另外PINK1基因突變的果蠅亦會產生嗅覺辦識功能障礙。在環境因素方面,一種廣效使用的除草劑百草枯(paraquat)被認為與誘發帕金森氏症有關。根據中醫生理學概念,消化系統功能紊亂,不但影響腸道功能亦會影響其他系統的運作,包含中樞神經系統。因此本實驗採用中草藥紫蘇初萃取物作為實驗藥物,紫蘇(Perilla frutescens)在中醫臨床的主要功能用於治療因飲食不節而導致的腸胃氣滯,進而減緩其他表症的不適感,另外紫蘇另一項功能在於能解食魚蟹之毒。因此我們評估紫蘇可能對於野生型及突變型果蠅因百草枯引發之毒性具有保護作用。實驗結果顯示,紫蘇可以有效的降低因曝露在百草枯(24-72小時)下的致死率,不論在野生型Oregon-R品系及PINK1B9或Parkin25的突變型(年齡:3-7天, 10-14天)。然而紫蘇對於果蠅的運動爬行功能只有在施予百草枯後的野生型Oregon-R 品系(年齡:3-7天)有些微改善,但是在嗅覺辨識功能被百草枯破壞的PINK1B9 突變果蠅,則能經由紫蘇而減少嗅覺辨識的損害。綜合以上實驗結果得知紫蘇對於百草枯所造成的毒性具有保護效果,期望未來可作為治療帕金森氏症的潛在藥物。 / Parkinson’s disease (PD) is the most common neurodegenerative disease characterized by motor deficits including resting tremor, akinesia, and rigidity. The olfactory disturbance appears to be an earlier symptom prior to the onset of motor dysfunction in PD. Genetic research has shown that mutations of the PTEN-induced putative kinase 1 (PINK1) and Parkin genes could lead to mitochondrial dysfunction and neuronal degeneration in PD. Moreover, the environmental neurotoxin paraquat (PQ), a widely used pesticide, is known to induce PD-like symptoms. According to Traditional Chinese medicine physiology theory, that the central nervous system and gut interact bidirectionally in functional gastrointestinal disorders. Perilla frutescens, a traditional herbal medicine, is mainly prescribed for the treatment of gastrointestinal discomfort after eating and symptom of qi stagnation. In addition, perilla has an important role in detoxification of seafood intake. Therefore, this study evaluated the protective effects of perilla on paraquat-induced toxicity in Drosophila PINK1 and parkin mutants and wild type flies. Result showed that perilla can effectively alleviate lethality of drosophila, including PINK1 and parkin mutant flies, exposed to paraquat for 24-72 hours. However, their motor dysfunctions induced by paraquat were little ameliorated by perilla. Importantly, the olfactory dysfunction, particularly olfactory discrimination, elicited by paraquat in PINK1 mutant fly was improved by perilla. Taken together, our findings provide the protective potential of perilla for treatment of PD syndromes.
14

Elucidating the functional interplay between Parkinson’s disease-related proteins and the mitochondrion / Etude de l’interaction fonctionnelle entre les protéines impliquées dans la maladie de Parkinson et la mitochondrie

Bertolin, Giulia 19 November 2013 (has links)
La maladie de Parkinson (MP) est une affection neurodégénérative fréquente d’étiologie inconnue, touchant environ 5% de la population mondiale après 80 ans. Environ 10% des cas correspondent à des formes familiales à transmission mendélienne. Pendant longtemps, un dysfonctionnement mitochondrial a été soupçonné jouer un rôle dans la physiopathologie de la MP. Cette possibilité a été récemment corroborée par des découvertes majeures réalisées dans le cadre des formes autosomiques récessives. Parkine et PINK1, les produits de deux gènes associés à ces formes familiales, participent au sein d’une même voie moléculaire au contrôle de la qualité mitochondriale, par la régulation du transport, de la dynamique, de la biogenèse et de la clairance de ces organites.L’objectif de ce travail a été d’élucider certains des mécanismes moléculaires sous-jacents à la régulation de l’homéostasie mitochondriale par Parkine et PINK1. Nous avons utilisé un ensemble d’approches de biologie moléculaire et cellulaire, de biochimie et de microscopie confocale, afin d’identifier et de caractériser des interacteurs moléculaires de Parkine et PINK1 à la membrane mitochondriale externe (MME).Dans la première partie de ce travail, nous avons découvert que la Parkine et PINK1 s’associent sur la MME de mitochondries dysfonctionnelles à proximité de la translocase de la MME (TOM), un complexe dédié à l’import de la grande majorité des protéines mitochondriales. Nous avons montré que ces interactions protéiques jouent un rôle clé dans l’activation du programme de dégradation mitochondriale régulé par la voie PINK1/Parkine. Nous avons également observé que la GTPase de type dynamine Drp1, impliquée dans la fission mitochondriale, est recrutée au niveau de mitochondries endommagées à proximité de Parkine et PINK1 ; ainsi, les processus de fission et de dégradation mitochondriales pourraient être spatialement coordonnés. Dans la deuxième partie de ce projet, nous avons caractérisé l’interaction fonctionnelle entre la Parkine et l’enzyme neuroprotectrice multifonctionnelle de la matrice mitochondriale, 17B-hydroxystéroïde déshydrogénase de type 10 (HSD17B10), dont les taux s’étaient révélés être diminués chez la souris déficiente en Parkine. Nous avons mis en évidence un effet protecteur d’HSD17B10 vis-à-vis de la mitochondrie qui était indépendant de son activité catalytique. Nous avons de plus montré que la Parkine interagit directement avec HSD17B10 à proximité de la machinerie TOM et qu’elle régule positivement l’abondance mitochondriale de cette protéine ; cela suggère qu’elle pourrait promouvoir son import.Dans l’ensemble, ces résultats approfondissent notre connaissance des mécanismes moléculaires mis en jeu par la Parkine et PINK1 dans le contrôle de la qualité mitochondriale, élargissant ainsi notre compréhension de leur rôle dans la physiopathologie des formes autosomiques récessive de MP. / Parkinson’s disease (PD) is a common neurodegenerative disorder of unknown etiology, affecting nearly 5% of the world population over the age of 80. Nearly 10% of PD cases are familial forms with Mendelian inheritance pattern. Mitochondrial dysfunction has long been suspected to play a role in the physiopathology of sporadic PD. This possibility has been recently corroborated by major discoveries in the field of autosomal recessive PD. Parkin and PINK1, the products of two genes associated with these forms, participate in a common molecular pathway focused on maintenance of mitochondrial quality, with roles in mitochondrial transport, dynamics, biogenesis and clearance.The aim of this work was to elucidate some of the molecular mechanisms underlying the regulation of mitochondrial homeostasis by Parkin and PINK1. We used a combination of approaches in molecular and cell biology, biochemistry and confocal microscopy to identify and characterize molecular interactors of Parkin and PINK1 on the outer mitochondrial membrane (OMM).In the first part of my project, we discovered that Parkin and PINK1 associate on dysfunctional mitochondria in proximity of the translocase of the OMM (TOM), a complex devoted to the mitochondrial import of the vast majority of the mitochondrial proteins. We provided evidence that these associations play a key role in activation of the mitochondrial degradation program mediated by the PINK1/Parkin pathway. We also observed that the dynamin-related GTPase Drp1, involved in mitochondrial fission is recruited to defective mitochondria in proximity of Parkin and PINK1, suggesting that mitochondrial fission occurs at sites where mitochondrial clearance is initiated.In the second part of my project, we characterized the functional interaction between Parkin and the multifunctional neuroprotective mitochondrial matrix enzyme 17B-hydroxysteroid dehydrogenase type 10 (HSD17B10), previously found by the team to be altered in abundance in Parkin-deficient mice. We demonstrated that HSD17B10 exerts a mitochondrion-protective function independent of its enzymatic activity. In addition, we provided evidence that Parkin directly interacts with HSD17B10 at the TOM machinery and that it positively regulates its mitochondrial levels, possibly through the regulation of its mitochondrial import.Altogether, these results provide novel insights into the molecular mechanisms by which Parkin and PINK1 control mitochondrial quality, and deepen our understanding of the role of these proteins in the physiopathology of autosomal recessive PD.
15

Perte de fonction de la voie de signalisation <<PINK1/Parkine>> dans la physiopathologie de la maladie de Parkinson - Mécanismes et conséquences / Loss of function of the « PINK1/Parkin » signaling pathway in the pathophysiology of Parkinson’s disease – Mechanisms and consequences

Jacoupy, Maxime 19 September 2016 (has links)
La maladie de Parkinson (MP) est caractérisée par une dégénérescence des neurones dopaminergiques de la substance noire. Elle est le plus souvent sporadique mais des formes familiales monogéniques existent, notamment dues à des mutations de PARK2 et de PINK1. Ces gènes codent pour l'ubiquitine-protéine ligase cytosolique Parkine et la sérine/thréonine kinase mitochondriale PINK1, deux acteurs majeurs du contrôle de qualité mitochondrial. Ce travail étudie le rôle de leur interaction au niveau de la membrane mitochondriale externe dans la régulation de l'homéostasie mitochondriale.Nous avons montré que l'association de PINK1 et Parkine au complexe d'import mitochondrial TOM lors d'un stress mitochondrial permet l'import de la grande majorité des protéines adressées à la mitochondrie ; que déstabiliser ce complexe suffit à initier la mitophagie ; et que l'activation de Parkine par PINK1 facilite l'import de son substrat HSD17?10. Nous avons développé un biosenseur moléculaire inductible, permettant d'étudier la voie d'import classique des protéines à pré-séquence. Nous avons également montré, dans un modèle neuronal, qu'un stress mitochondrial, en présence de Parkine, induit une forte augmentation de l'expression de gènes clés de la biogenèse mitochondriale ; et que ces gènes sont up-régulés de façon basale dans les neurones PARK2-/-, indiquant une possible altération de la réponse aigüe au stress.Ces résultats approfondissent notre connaissance de la physiopathologie des formes autosomiques récessives de MP en soulignant l'importance de la voie PINK1/Parkine dans l'import et la biogenèse mitochondriaux. / Parkinson’s disease (PD) is linked to a specific loss of dopaminergic neurons of the substancia nigra. The disease is most often sporadic but familial monogenic forms exist, for example due to mutations in PARK2 or PINK1. Those genes encore the cytosolic ubiquitin-protein ligase Parkin and the mitochondrial serine/threonine kinase PINK1, both essential for mitochondrial quality control. This work studies the role of their interaction at the outer mitochondrial membrane in the regulation of mitochondrial homeostasis. We found that the association of PINK1 and Parkin to the mitochondrial import TOM complex during mitochondrial stress induces the import of most proteins targeted to mitochondria; that destabilizing this complex is sufficient to initiate mitophagy; and that Parkin activation by PINK1 facilitates the import of its substrate, HSD17β10. We developed an inducible BRET-based molecular biosensor to study the classical pre-sequence import pathway. We also found, in a neuronal model, that mitochondrial stress induced a strong increase in the expression of mitochondrial biogenesis key genes, in the presence of Parkin; and that these genes are basally up-regulated in PARK2-/- neurons, possibly reflecting an alteration of acute stress response. These results increase our understanding of the pathophysiology of autosomal recessive forms of PD, underlining the importance of the PINK1/Parkin pathway in mitochondrial import and biogenesis.
16

The Impact of Parkinson’s Disease on Mammalian Adult Neurogenesis

Bastasic, Joseph 12 September 2019 (has links)
Parkinson’s disease (PD) has been reported to negatively affect adult neurogenesis. Mitochondrial dysfunction associated with PD may be involved, given that recent studies have identified mitochondria to be central regulators of neural stem cell (NSC) fate decisions. For this thesis, we sought to characterize adult neurogenesis in PINK1 and parkin knockout (KO) mouse models of PD. Immunohistochemical staining of subventricular zone (SVZ) and subgranular zone (SGZ) tissue sections from 6 month old mice was performed in order to identify and quantify changes in specific cell populations involved with adult neurogenesis. The loss of PINK1 or parkin was found to cause aberrant changes in adult neurogenesis, particularly in the SGZ. Going forward, it would be interesting to determine if the observed changes in adult neurogenesis were the result of mitochondrial dysfunction.
17

Zebrafish as a Model for the Study of Parkinson’s Disease

Xi, Yanwei 09 May 2011 (has links)
Parkinson’s disease (PD) is a common neurodegenerative disorder that is characterized by the degeneration of dopaminergic (DA) neurons in the substantia nigra and motor deficits. Although the majority of PD cases are sporadic, several genetic defects in rare familial cases have been identified. Animal models of these genetic defects have been created and have provided unique insights into the molecular mechanisms of the pathogenesis of PD. However, the etiology of PD is still not well understood. Here, taking advantage of the unique features offered by zebrafish, I characterized the functions of PINK1 (PTEN-induced kinase 1) gene, which is associated with recessive familial PD, in the development and survival of DA neurons. In zebrafish, antisense morpholino knockdown of pink1 did not cause a large loss of DA neurons in the ventral diencephalon (vDC), but the patterning of these neurons and their projections were perturbed. The pink1 morphants also showed impaired response to touch stimuli and reduced swimming behaviour. Moreover, the pink1 knockdown caused a significant reduction in the number of mitochondria, as well as mitochondrial morphological defects such as smaller size or loss of cristae, thus affecting mitochondrial function. These results suggest that zebrafish pink1 plays conserved important roles in the development of DA neurons and in the mitochondrial morphology and function. To better follow DA neurons after injury or administration of toxins, I generated a transgenic zebrafish line, Tg(dat:EGFP), in which the green fluorescent protein (GFP) is expressed under the control of cis-regulatory elements of dopamine transporter (dat). In Tg(dat:EGFP) fish, all major groups of DA neurons are correctly labeled with GFP, especially the ones in the vDC, which are analogous to the ascending midbrain DA neurons in mammals. In addition, we observed that the DA neurons in the vDC could partially be replaced after severe laser cell ablation. This suggests that zebrafish may have the unique capacity of regenerating DA neurons after injury. Taken together, my studies suggested that zebrafish could be a useful alternative animal model for the study of the molecular mechanisms underlying PD and for the screening of potential therapeutic compounds for PD.
18

Zebrafish as a Model for the Study of Parkinson’s Disease

Xi, Yanwei 09 May 2011 (has links)
Parkinson’s disease (PD) is a common neurodegenerative disorder that is characterized by the degeneration of dopaminergic (DA) neurons in the substantia nigra and motor deficits. Although the majority of PD cases are sporadic, several genetic defects in rare familial cases have been identified. Animal models of these genetic defects have been created and have provided unique insights into the molecular mechanisms of the pathogenesis of PD. However, the etiology of PD is still not well understood. Here, taking advantage of the unique features offered by zebrafish, I characterized the functions of PINK1 (PTEN-induced kinase 1) gene, which is associated with recessive familial PD, in the development and survival of DA neurons. In zebrafish, antisense morpholino knockdown of pink1 did not cause a large loss of DA neurons in the ventral diencephalon (vDC), but the patterning of these neurons and their projections were perturbed. The pink1 morphants also showed impaired response to touch stimuli and reduced swimming behaviour. Moreover, the pink1 knockdown caused a significant reduction in the number of mitochondria, as well as mitochondrial morphological defects such as smaller size or loss of cristae, thus affecting mitochondrial function. These results suggest that zebrafish pink1 plays conserved important roles in the development of DA neurons and in the mitochondrial morphology and function. To better follow DA neurons after injury or administration of toxins, I generated a transgenic zebrafish line, Tg(dat:EGFP), in which the green fluorescent protein (GFP) is expressed under the control of cis-regulatory elements of dopamine transporter (dat). In Tg(dat:EGFP) fish, all major groups of DA neurons are correctly labeled with GFP, especially the ones in the vDC, which are analogous to the ascending midbrain DA neurons in mammals. In addition, we observed that the DA neurons in the vDC could partially be replaced after severe laser cell ablation. This suggests that zebrafish may have the unique capacity of regenerating DA neurons after injury. Taken together, my studies suggested that zebrafish could be a useful alternative animal model for the study of the molecular mechanisms underlying PD and for the screening of potential therapeutic compounds for PD.
19

Zebrafish as a Model for the Study of Parkinson’s Disease

Xi, Yanwei 09 May 2011 (has links)
Parkinson’s disease (PD) is a common neurodegenerative disorder that is characterized by the degeneration of dopaminergic (DA) neurons in the substantia nigra and motor deficits. Although the majority of PD cases are sporadic, several genetic defects in rare familial cases have been identified. Animal models of these genetic defects have been created and have provided unique insights into the molecular mechanisms of the pathogenesis of PD. However, the etiology of PD is still not well understood. Here, taking advantage of the unique features offered by zebrafish, I characterized the functions of PINK1 (PTEN-induced kinase 1) gene, which is associated with recessive familial PD, in the development and survival of DA neurons. In zebrafish, antisense morpholino knockdown of pink1 did not cause a large loss of DA neurons in the ventral diencephalon (vDC), but the patterning of these neurons and their projections were perturbed. The pink1 morphants also showed impaired response to touch stimuli and reduced swimming behaviour. Moreover, the pink1 knockdown caused a significant reduction in the number of mitochondria, as well as mitochondrial morphological defects such as smaller size or loss of cristae, thus affecting mitochondrial function. These results suggest that zebrafish pink1 plays conserved important roles in the development of DA neurons and in the mitochondrial morphology and function. To better follow DA neurons after injury or administration of toxins, I generated a transgenic zebrafish line, Tg(dat:EGFP), in which the green fluorescent protein (GFP) is expressed under the control of cis-regulatory elements of dopamine transporter (dat). In Tg(dat:EGFP) fish, all major groups of DA neurons are correctly labeled with GFP, especially the ones in the vDC, which are analogous to the ascending midbrain DA neurons in mammals. In addition, we observed that the DA neurons in the vDC could partially be replaced after severe laser cell ablation. This suggests that zebrafish may have the unique capacity of regenerating DA neurons after injury. Taken together, my studies suggested that zebrafish could be a useful alternative animal model for the study of the molecular mechanisms underlying PD and for the screening of potential therapeutic compounds for PD.
20

Zebrafish as a Model for the Study of Parkinson’s Disease

Xi, Yanwei January 2011 (has links)
Parkinson’s disease (PD) is a common neurodegenerative disorder that is characterized by the degeneration of dopaminergic (DA) neurons in the substantia nigra and motor deficits. Although the majority of PD cases are sporadic, several genetic defects in rare familial cases have been identified. Animal models of these genetic defects have been created and have provided unique insights into the molecular mechanisms of the pathogenesis of PD. However, the etiology of PD is still not well understood. Here, taking advantage of the unique features offered by zebrafish, I characterized the functions of PINK1 (PTEN-induced kinase 1) gene, which is associated with recessive familial PD, in the development and survival of DA neurons. In zebrafish, antisense morpholino knockdown of pink1 did not cause a large loss of DA neurons in the ventral diencephalon (vDC), but the patterning of these neurons and their projections were perturbed. The pink1 morphants also showed impaired response to touch stimuli and reduced swimming behaviour. Moreover, the pink1 knockdown caused a significant reduction in the number of mitochondria, as well as mitochondrial morphological defects such as smaller size or loss of cristae, thus affecting mitochondrial function. These results suggest that zebrafish pink1 plays conserved important roles in the development of DA neurons and in the mitochondrial morphology and function. To better follow DA neurons after injury or administration of toxins, I generated a transgenic zebrafish line, Tg(dat:EGFP), in which the green fluorescent protein (GFP) is expressed under the control of cis-regulatory elements of dopamine transporter (dat). In Tg(dat:EGFP) fish, all major groups of DA neurons are correctly labeled with GFP, especially the ones in the vDC, which are analogous to the ascending midbrain DA neurons in mammals. In addition, we observed that the DA neurons in the vDC could partially be replaced after severe laser cell ablation. This suggests that zebrafish may have the unique capacity of regenerating DA neurons after injury. Taken together, my studies suggested that zebrafish could be a useful alternative animal model for the study of the molecular mechanisms underlying PD and for the screening of potential therapeutic compounds for PD.

Page generated in 0.0218 seconds