• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 53
  • 41
  • 19
  • 8
  • 4
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 156
  • 29
  • 28
  • 18
  • 18
  • 17
  • 17
  • 14
  • 13
  • 13
  • 13
  • 12
  • 12
  • 12
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Assessment of Fucoidin efficacy in Aβ-peptide induced Alzheimer’s disease rodent model

Aarti Patel Unknown Date (has links)
Abstract Alzheimer’s disease (AD) is a major public health concern worldwide, with an increasing prevalence in the elderly population. AD is a progressive neurological disorder of multi-faceted origin, where factors such as genetic mutations, biochemical changes, along with inflammatory cascade and soluble beta amyloid (Aβ) peptide, are thought to play a pivotal role in synaptic failure and neuronal death, ultimately leading to cognitive and neuropsychiatric decline in patients suffering from the disease. At present, there is no long-term cure for the disease, although there is access to pharmacotherapy that might improve cognitive and neuropsychiatric symptoms early in the course of the disease. The current pharmacological therapy for AD only provides symptomatic relief for a very short period of time. It is therefore of utmost importance to discover other pharmacological strategies that might delay the development of AD and slow down the disease progression in terms of cognitive decline and neurodegeneration. Elucidating the pathogenic mechanisms involved in AD neuropathogenesis is a major goal to find efficacious disease-modifying treatments. What remains to be understood completely are the intracellular pathways affected by Aβ protein which may lead to neurodegeneration in AD. Since phosphorylation and dephosphorylation mechanisms are crucial in the β-amyloid precursor protein (APP) metabolism, protein kinase C has emerged as one of the key regulators of the APP metabolism. Indeed, dysregulation of the PKC pathway might play a role in the intracellular mechanisms of neurodegeneration, but their effective involvement still remains elusive. Therefore, a detailed analysis of PKC pathways in established models of AD neurodegeneration is necessary and will form part of this work. Fucoidin is a sulphated polysaccharide extracted from edible brown seaweed, which has been shown to exhibit anti-inflammatory and anti-oxidant effects as well as being a neuroprotectant in various inflammatory diseases including hypoxic ischemia, atherosclerosis and Heyman nephritis. Therefore, fucoidin may have an inhibitory effect on the inflammatory mechanisms of AD. Little is known, however, about the effect of fucoidin on AD. Animal models of AD are extremely valuable for the discovery and development of new treatments. Rodents have been one of the preferred models for pharmacological and behavioural studies in AD. In this thesis, first aim was to establish a non-transgenic Aβ-induced AD model in rats. AD was induced utilising a published protocol which involved the bilateral injection of aggregated Aβ (1-42) into the CA3 subfield of the hippocampus in rat brain. Behavioural assessment with well defined tools such as the Morris water maze and T-maze were utilised to assess the impairment in spatial working memory in rats. Behavioural impairments along with increased astrocytosis and microgliosis were observed in this particular Aβ-induced AD model. In the established disease model, fucoidin (50 mg/kg/day and 25 mg/kg/day) and ibuprofen (50 mg/kg/day) were shown to provide a partial protective effect on impairment in memory function in the MWM behavioural task in rats treated prior to disease initiation and throughout the course of the study. In addition, the histopathological and quantitative analysis of AD brain sections showed a marked reduction in reactive glial fibrillary acidic protein (GFAP) and microglia in fucoidin (low and high dose) and ibuprofen treated Aβ injected rats compared to untreated Aβ injected rats. These results indicate that fucoidin may serve as a possible effective therapeutic approach to improve AD symptoms. There is strong evidence that PKC α and ε signalling pathways regulate important molecular events in memory impairment and neurodegenerative pathophysiology in AD. A possible neuroprotective mechanism of fucoidin involving attenuation of an Aβ-induced decrease in PKC ε phosphorylation using cultured SHSY5Y neuroblastoma cells as a model system was examined. Co-administration of fucoidin (2μM and 5 μM) with Aβ (1μM) abolished the inhibitory effect of Aβ on the phosphorylation of PKCε in a concentration-dependent manner as revealed by western blot analysis. These findings suggest that a possible mechanism underpinning the neuroprotective effect of fucoidin may be through prevention of A-induced inhibition of PKC phosphorylation and may serve as a possible therapeutic approach to improve AD symptoms. As cellular events that involve PKC are affected by Aβ in in vitro systems, it was necessary to examine whether PKC activity is also modulated by the Aβ treatment in vivo in our Aβ-peptide induced AD model. Therefore, the next aim was to assess the potential for fucoidin use as an intervention therapy in an established disease stage in the Aβ-peptide induced AD model. Intervention with fucoidin (50 mg/kg/day, i.p.) in the established disease stage partially prevented Aβ (1-42) mediated damage with respect to memory impairment, neuroinflammation and PKC ε phosphorylation in the in vivo AD model consistent with the in vitro findings in SHSY5Y cells.
12

Assessment of Fucoidin efficacy in Aβ-peptide induced Alzheimer’s disease rodent model

Aarti Patel Unknown Date (has links)
Abstract Alzheimer’s disease (AD) is a major public health concern worldwide, with an increasing prevalence in the elderly population. AD is a progressive neurological disorder of multi-faceted origin, where factors such as genetic mutations, biochemical changes, along with inflammatory cascade and soluble beta amyloid (Aβ) peptide, are thought to play a pivotal role in synaptic failure and neuronal death, ultimately leading to cognitive and neuropsychiatric decline in patients suffering from the disease. At present, there is no long-term cure for the disease, although there is access to pharmacotherapy that might improve cognitive and neuropsychiatric symptoms early in the course of the disease. The current pharmacological therapy for AD only provides symptomatic relief for a very short period of time. It is therefore of utmost importance to discover other pharmacological strategies that might delay the development of AD and slow down the disease progression in terms of cognitive decline and neurodegeneration. Elucidating the pathogenic mechanisms involved in AD neuropathogenesis is a major goal to find efficacious disease-modifying treatments. What remains to be understood completely are the intracellular pathways affected by Aβ protein which may lead to neurodegeneration in AD. Since phosphorylation and dephosphorylation mechanisms are crucial in the β-amyloid precursor protein (APP) metabolism, protein kinase C has emerged as one of the key regulators of the APP metabolism. Indeed, dysregulation of the PKC pathway might play a role in the intracellular mechanisms of neurodegeneration, but their effective involvement still remains elusive. Therefore, a detailed analysis of PKC pathways in established models of AD neurodegeneration is necessary and will form part of this work. Fucoidin is a sulphated polysaccharide extracted from edible brown seaweed, which has been shown to exhibit anti-inflammatory and anti-oxidant effects as well as being a neuroprotectant in various inflammatory diseases including hypoxic ischemia, atherosclerosis and Heyman nephritis. Therefore, fucoidin may have an inhibitory effect on the inflammatory mechanisms of AD. Little is known, however, about the effect of fucoidin on AD. Animal models of AD are extremely valuable for the discovery and development of new treatments. Rodents have been one of the preferred models for pharmacological and behavioural studies in AD. In this thesis, first aim was to establish a non-transgenic Aβ-induced AD model in rats. AD was induced utilising a published protocol which involved the bilateral injection of aggregated Aβ (1-42) into the CA3 subfield of the hippocampus in rat brain. Behavioural assessment with well defined tools such as the Morris water maze and T-maze were utilised to assess the impairment in spatial working memory in rats. Behavioural impairments along with increased astrocytosis and microgliosis were observed in this particular Aβ-induced AD model. In the established disease model, fucoidin (50 mg/kg/day and 25 mg/kg/day) and ibuprofen (50 mg/kg/day) were shown to provide a partial protective effect on impairment in memory function in the MWM behavioural task in rats treated prior to disease initiation and throughout the course of the study. In addition, the histopathological and quantitative analysis of AD brain sections showed a marked reduction in reactive glial fibrillary acidic protein (GFAP) and microglia in fucoidin (low and high dose) and ibuprofen treated Aβ injected rats compared to untreated Aβ injected rats. These results indicate that fucoidin may serve as a possible effective therapeutic approach to improve AD symptoms. There is strong evidence that PKC α and ε signalling pathways regulate important molecular events in memory impairment and neurodegenerative pathophysiology in AD. A possible neuroprotective mechanism of fucoidin involving attenuation of an Aβ-induced decrease in PKC ε phosphorylation using cultured SHSY5Y neuroblastoma cells as a model system was examined. Co-administration of fucoidin (2μM and 5 μM) with Aβ (1μM) abolished the inhibitory effect of Aβ on the phosphorylation of PKCε in a concentration-dependent manner as revealed by western blot analysis. These findings suggest that a possible mechanism underpinning the neuroprotective effect of fucoidin may be through prevention of A-induced inhibition of PKC phosphorylation and may serve as a possible therapeutic approach to improve AD symptoms. As cellular events that involve PKC are affected by Aβ in in vitro systems, it was necessary to examine whether PKC activity is also modulated by the Aβ treatment in vivo in our Aβ-peptide induced AD model. Therefore, the next aim was to assess the potential for fucoidin use as an intervention therapy in an established disease stage in the Aβ-peptide induced AD model. Intervention with fucoidin (50 mg/kg/day, i.p.) in the established disease stage partially prevented Aβ (1-42) mediated damage with respect to memory impairment, neuroinflammation and PKC ε phosphorylation in the in vivo AD model consistent with the in vitro findings in SHSY5Y cells.
13

Assessment of Fucoidin efficacy in Aβ-peptide induced Alzheimer’s disease rodent model

Aarti Patel Unknown Date (has links)
Abstract Alzheimer’s disease (AD) is a major public health concern worldwide, with an increasing prevalence in the elderly population. AD is a progressive neurological disorder of multi-faceted origin, where factors such as genetic mutations, biochemical changes, along with inflammatory cascade and soluble beta amyloid (Aβ) peptide, are thought to play a pivotal role in synaptic failure and neuronal death, ultimately leading to cognitive and neuropsychiatric decline in patients suffering from the disease. At present, there is no long-term cure for the disease, although there is access to pharmacotherapy that might improve cognitive and neuropsychiatric symptoms early in the course of the disease. The current pharmacological therapy for AD only provides symptomatic relief for a very short period of time. It is therefore of utmost importance to discover other pharmacological strategies that might delay the development of AD and slow down the disease progression in terms of cognitive decline and neurodegeneration. Elucidating the pathogenic mechanisms involved in AD neuropathogenesis is a major goal to find efficacious disease-modifying treatments. What remains to be understood completely are the intracellular pathways affected by Aβ protein which may lead to neurodegeneration in AD. Since phosphorylation and dephosphorylation mechanisms are crucial in the β-amyloid precursor protein (APP) metabolism, protein kinase C has emerged as one of the key regulators of the APP metabolism. Indeed, dysregulation of the PKC pathway might play a role in the intracellular mechanisms of neurodegeneration, but their effective involvement still remains elusive. Therefore, a detailed analysis of PKC pathways in established models of AD neurodegeneration is necessary and will form part of this work. Fucoidin is a sulphated polysaccharide extracted from edible brown seaweed, which has been shown to exhibit anti-inflammatory and anti-oxidant effects as well as being a neuroprotectant in various inflammatory diseases including hypoxic ischemia, atherosclerosis and Heyman nephritis. Therefore, fucoidin may have an inhibitory effect on the inflammatory mechanisms of AD. Little is known, however, about the effect of fucoidin on AD. Animal models of AD are extremely valuable for the discovery and development of new treatments. Rodents have been one of the preferred models for pharmacological and behavioural studies in AD. In this thesis, first aim was to establish a non-transgenic Aβ-induced AD model in rats. AD was induced utilising a published protocol which involved the bilateral injection of aggregated Aβ (1-42) into the CA3 subfield of the hippocampus in rat brain. Behavioural assessment with well defined tools such as the Morris water maze and T-maze were utilised to assess the impairment in spatial working memory in rats. Behavioural impairments along with increased astrocytosis and microgliosis were observed in this particular Aβ-induced AD model. In the established disease model, fucoidin (50 mg/kg/day and 25 mg/kg/day) and ibuprofen (50 mg/kg/day) were shown to provide a partial protective effect on impairment in memory function in the MWM behavioural task in rats treated prior to disease initiation and throughout the course of the study. In addition, the histopathological and quantitative analysis of AD brain sections showed a marked reduction in reactive glial fibrillary acidic protein (GFAP) and microglia in fucoidin (low and high dose) and ibuprofen treated Aβ injected rats compared to untreated Aβ injected rats. These results indicate that fucoidin may serve as a possible effective therapeutic approach to improve AD symptoms. There is strong evidence that PKC α and ε signalling pathways regulate important molecular events in memory impairment and neurodegenerative pathophysiology in AD. A possible neuroprotective mechanism of fucoidin involving attenuation of an Aβ-induced decrease in PKC ε phosphorylation using cultured SHSY5Y neuroblastoma cells as a model system was examined. Co-administration of fucoidin (2μM and 5 μM) with Aβ (1μM) abolished the inhibitory effect of Aβ on the phosphorylation of PKCε in a concentration-dependent manner as revealed by western blot analysis. These findings suggest that a possible mechanism underpinning the neuroprotective effect of fucoidin may be through prevention of A-induced inhibition of PKC phosphorylation and may serve as a possible therapeutic approach to improve AD symptoms. As cellular events that involve PKC are affected by Aβ in in vitro systems, it was necessary to examine whether PKC activity is also modulated by the Aβ treatment in vivo in our Aβ-peptide induced AD model. Therefore, the next aim was to assess the potential for fucoidin use as an intervention therapy in an established disease stage in the Aβ-peptide induced AD model. Intervention with fucoidin (50 mg/kg/day, i.p.) in the established disease stage partially prevented Aβ (1-42) mediated damage with respect to memory impairment, neuroinflammation and PKC ε phosphorylation in the in vivo AD model consistent with the in vitro findings in SHSY5Y cells.
14

Role of Transient Receptor Potential (TRP) Channels in Nociception

Cao, Deshou 01 December 2009 (has links)
Transient receptor potential (TRP) channels play an important role in sensory and nonsensory functions. TRPVanilloid 1 and TRPVanilloid 4 are proposed to be involved in inflammation-induced pain. TRPV1 is extensively studied and it is specifically involved in inflammatory thermal hypersensitivity. Mechanical hypersensitivity is one of the significant components of nociception. Several receptors have been proposed to underlie mechanosensation. The molecular entities responsible for mechanosensation are not fully understood. In this study, I have characterized the properties of TRPV4, a putative mechanosensitive ion channel expressed in dorsal root ganglion (DRG) neurons and nonsensory tissues. First, I have investigated the expression and function of TRPV4 and TRPV1 in the DRG neuronal cell bodies as well as their central terminals and determined the modulation by protein kinase C (PKC). Both TRPV4 and TRPV1 are expressed in DRG and laminae I and II of the spinal dorsal horn (DH). Ca2+ fluorescence imaging and whole-cell patch-clamp experiments showed that both capsaicin-induced TRPV1 response and 4alpha-phorbol 12, 13-didecanoate (4alpha-PDD)-induced TRPV4 response were observed in a proportion of the same DRG neurons, suggesting their co-expression. Incubation of DRG neurons with phorbol 12, 13-dibutyrate (PDBu), a PKC activator, resulted in a significantly greater potentiation of TRPV4 currents than TRPV1 currents. In HEK cells heterologously expressing TRPV4, PDBu potentiated TRPV4-mediated single-channel current activity. In patch-clamped DH neurons, the application of 4alpha-PDD at the first sensory synapse increased the frequency but not the amplitude of the miniature excitatory postsynaptic currents (mEPSCs), suggesting a presynaptic locus of action. 4alpha-PDD-induced increase in the frequency of mEPSC was further facilitated by PDBu. These results suggest that TRPV4 in the central terminals modulates synaptic transmission and is regulated by PKC. Second, I have studied the mechanosensitivity of TRPV4 in cell-attached patches by applying direct mechanical force via the patch pipette. In TRPV4 expressing HEK cells, the application of negative pressure evoked single-channel current activity in a reversible manner and the channel activity was enhanced after incubation with PDBu. TRPV4 has been shown to be activated by hypotonicity. Here I show that negative pressure exaggerated hypotonicity-induced single-channel current activity. However, in similar experimental conditions, cells expressing TRPV1 did not respond to mechanical force. TRP channels are also expressed in non-sensory regions and the role of these channels is not fully understood. Both TRPV4 and TRPV1 are expressed in the hippocampus. Using whole-cell patch-clamp techniques, I have found that 4alpha-PDD increased the frequency, but not the amplitude of mEPSCs in cultured hippocampal neurons, suggesting a presynaptic site of action. Interestingly, the application of capsaicin had no effect on synaptic transmission in hippocampal neuronal cultures. Finally, I have investigated the expression and function of TRP channels in diabetes because TRP channels have been shown to be involved in peripheral neuropathy as well as vascular complications in diabetes. ROS production plays a critical role in the progress of diabetes. I propose that lower levels of ROS up-regulate the expression TRP channels in the early stages of diabetes, leading to hyperalgesia, and higher levels of ROS or chronic exposure to ROS down-regulate TRP channels in the late stages of diabetes, resulting in hypoalgesia. I have found that the expression of TRPV1 and phospho p38 (p-p38) MAPK was increased in DRG of streptozotocin (STZ)-injected diabetic and non-diabetic hyperalgesic mice. An increase in TRPV1 and p-p38 MAPK levels was induced by STZ or H2O2 treatment in stably TRPV1 expressing HEK cells, suggesting the involvement of STZ-ROS-p38MAPK pathway. TRPV4 has been reported to be involved in vasodilatation by shear stress in blood vessels. Here, I have demonstrated that TRPV4 is expressed in lymphatic endothelial cells (LECs). Treatment with low concentration of H2O2 enhanced the expression of TRPV4 at mRNA and protein levels in LECs, suggesting that mild levels of ROS up-regulate TRPV4 expression. In diabetes, beta cell dysfunction is responsible for decreased insulin release. TRPV4 is expressed in RINm5F (beta cell line), islets and pancreas. It has been shown that hypotonicity induced insulin release in beta cell lines, which was mediated by activation of stretch-activated channels, raising the possibility of the involvement of TRPV4, a mechanosensitive channel. Therefore, I have studied the functional role of TRPV4 in beta cells. Incubation with 4alpha-PDD enhanced insulin release in RINm5F cells, suggesting TRPV4 regulates insulin secretion from pancreatic beta cells. Since TRPV4 expression levels are decreased in diabetes, insulin secretion from beta cells may be impaired. In summary, TRPV1, a thermosensitive channel, and TRPV4, a mechanosensitive channel, contribute to thermal and mechanical hyperalgesia, respectively in the early stage of DPN through their up-regulation by ROS-p38 MAPK and insulin/IGF-1 pathways. Due to the mechanical sensitivity of TRPV4 channel, the up-regulation in the early stage and down-regulation in the late stage may be involved in the development of vascular complications and regulation of insulin release in diabetes.
15

Mecanismos moleculares envolvidos com a resistência química de células tumorais de mama / Molecular mechanisms involved with the chemical resistance of breast tumor cells

Nascimento, Augusto Santana [UNESP] 18 November 2016 (has links)
Submitted by Augusto Santana Nascimento (nascimento@aluno.ibb.unesp.br) on 2017-01-19T12:49:36Z No. of bitstreams: 1 Dissertacao Augusto.docx: 2881032 bytes, checksum: c87b3b303b6f8075ca2bde19b2863849 (MD5) / Rejected by LUIZA DE MENEZES ROMANETTO (luizamenezes@reitoria.unesp.br), reason: Solicitamos que realize uma nova submissão seguindo as orientações abaixo: A versão final da dissertação/tese deve ser submetida no formato PDF (Portable Document Format). O arquivo PDF não deve estar protegido e a dissertação/tese deve estar em um único arquivo, inclusive os apêndices e anexos, se houver. Por favor, corrija o formato do arquivo e realize uma nova submissão. Agradecemos a compreensão. on 2017-01-20T11:53:55Z (GMT) / Submitted by Augusto Santana Nascimento (nascimento@aluno.ibb.unesp.br) on 2017-01-23T17:19:59Z No. of bitstreams: 1 Dissertacao Augusto.pdf: 2309354 bytes, checksum: a8372ec1b075dc9d75fd293868f6988a (MD5) / Approved for entry into archive by Juliano Benedito Ferreira (julianoferreira@reitoria.unesp.br) on 2017-01-25T11:40:26Z (GMT) No. of bitstreams: 1 nascimento_as_me_bot.pdf: 2309354 bytes, checksum: a8372ec1b075dc9d75fd293868f6988a (MD5) / Made available in DSpace on 2017-01-25T11:40:26Z (GMT). No. of bitstreams: 1 nascimento_as_me_bot.pdf: 2309354 bytes, checksum: a8372ec1b075dc9d75fd293868f6988a (MD5) Previous issue date: 2016-11-18 / Embora algum progresso tenha sido alcançado nos últimos anos, ainda são necessários estudos capazes de desvendar os mecanismos moleculares envolvidos com o fenótipo de resistência a múltiplas drogas (MDR) em células tumorais. Com esta finalidade, estabelecemos o perfil quinômico (através do microarranjo de peptídeos, PepChip) das linhagens MCF7 e MCF7Res, fenótipo parental e resistente respectivamente, de células de câncer de mama. Os resultados obtidos pelo microarranjo de peptídeos e posteriormente, validados por western blotting, apontaram o envolvimento da via de sinalização Jak-Stat e isoformas de PKC no processo de resistência das células de câncer de mama. Além disso, mostramos envolvimento de p42/44-mapk, Ras e um aumento na expressão de MMP-9. Estes resultados mostram o potencial agressivo destas células resistentes, visto que estas vias estão envolvidas em mecanismos responsáveis pela proliferação e invasão celular. Como as proteínas Jak1 e Jak2 mostraram-se envolvidas, decidimos avaliar níveis de fosforilação de Stats 1, 2, 3, 5 e 6 e mostramos que todas estavam up-fosforiladas nas células resistentes. Baseado nestes resultados, decidimos avaliar através de um ensaio funcional, o papel de Jak2 no fenótipo resistente e, desta forma, avaliamos a viabilidade das células MCF7Res em pré-tratamento com 2 concentrações subtóxicas do inibidor de Jak2 (5µM e 10µM) e nossos resultados claramente mostraram que, inibindo Jak2, as células MCF7Res ficam mais sensíveis a daunorrubicina, aumentando a taxa de morte celular frente à resposta ao quimioterápico. Baseado nos resultados obtidos pelo fosfoproteoma concluímos que o fenótipo MDR envolve metabolismo específico em células tumorais de mama, onde isoformas de PKCs e sinalização Jak-Stat exercem função de destaque. Assim, estes dados apontam o potencial uso de inibidores de Jak2 como estratégia para o tratamento de pacientes não responsivos a terapias convencionais.
16

The Identification of Notch1 Functional Domains Responsible for its Physical Interaction with PKCθ

Rossiter, Wesley D 23 March 2016 (has links)
The adaptive immune system is a complex network of cells that protect the body from invasion by foreign pathogens. Crucial to the function of the adaptive immune system is the activation, proliferation and differentiation of T cells in response to foreign pathogen presentation by antigen presenting cells. T cell activation is driven through different signaling pathways that are dependent on phosphorylation of substrates by kinases. In the PLC pathway that activates the il2 gene program, Protein Kinase C-q (PKCq) and Notch1 localize to the immunological synapse and help drive the signaling cascade that leads to robust T cell activation. It has been previously shown that PKCq and Notch1, both interact with the CBM complex at the immunological synapse. Additionally, PKCq and Notch1 both have specific cytoplasmic and nuclear functions that help drive the il2 gene program. Here, we demonstrate the localization of PKCq and Notch1 constructs transfected into HEK 293 cells. The use of deletion constructs of Notch1 was intended to inform us of what functional domain of Notch1 was responsible for the interaction with PKCq, however no direct interaction was demonstrated with the PKCq and Notch1 constructs used in these experiments. We hypothesize that this is likely due to the inactive form of PKCq found in our construct, or a result of the cell type used in these experiments.
17

Regulation of Human Epidermal Keratinocyte Survival and Differentiation

Zhu, Ling January 2008 (has links)
No description available.
18

HRPAP20: A NOVEL CALMODULIN-BINDING PHOSPHOPROTEIN INVOLVED IN TUMOR PROGRESSION

SHUKLA, MANASI NARENDRA 18 July 2007 (has links)
No description available.
19

Ischemia/Reperfusion Injury in the Intestine: Important Roles for PKC, MAPK, and Adenosine

Mammen, Joshua Matthew Varghise 07 August 2009 (has links)
No description available.
20

Ação da Proteína Kinase C na maturação de oócitos bovinos / Role of Protein Kinase C on bovine oocyte maturation

Lopes, Everton 28 June 2012 (has links)
A qualidade do oócito é um fator limitante na fertilidade das fêmeas e reflete seu intrínseco potencial ao desenvolvimento embrionário subsequente. As alterações moleculares e bioquímicas no processo de maturação dos oócitos são necessárias para permitir a fecundação destes. Sob influência das gonadotrofinas, uma cascata de eventos é desencadeada, alterando a expressão gênica e a estrutura dos folículos. A maturação ocorre pelo intercâmbio entre o oócito e as células do cumulus que irão fornecer fatores para o desenvolvimento do oócito e criar o microambiente necessário para garantir o sucesso na maturação. A ação do FSH sobre a retomada da meiose ocorre, possivelmente, por ativação da proteína quinase C (PKC). A via de sinalização desta proteína parece estar envolvida na ativação da quinase ativada por mitógeno (MAPK) em oócitos e células do cumulus, na maturação induzida por FSH e LH, além de regular a síntese do Fator de Crescimento Epidermal (EGF). Deste modo, o objetivo do presente trabalho foi avaliar a ação da PKC na maturação de oócitos bovinos e se esta ativação envolve o EGF. Para tal foram realizados dois experimentos. Em ambos, a progressão do ciclo celular foi avaliada utilizando a sonda fluorescente Hoechst 33342. A expansão das células do cumulus foi avaliada utilizando-se o software Image Pro Plus 5.1 para análise das imagens dos oócitos geradas em microscópio Olympus IX81. O maior diâmetro de cada complexo cumulus oócito foi adotado como parâmetro de mensuração da expansão. A dosagem de progesterona do meio de cultivo foi realizada pela técnica de RIA. A ativação da PKC e da MAPK foi avaliada pela técnica de Western blot. Os dados foram avaliados pelo software SigmaPlot versão 12.2 e submetidos ao teste de normalidade (Shapiro-Wilk). Quando necessário, os dados foram transformados. Para comparação entre dois tratamentos, utilizou-se o teste t-student. Para mais de dois tratamentos foi realizada análise de variância e teste de comparação de médias (TUKEY), considerando-se 0,05 para rejeitar a hipótese de nulidade. No experimento 1 foi avaliado se a ativação da PKC foi estimulada por gonadotrofinas. Os oócitos foram maturados in vitro tratados com gonadotrofinas, na presença ou ausência do inibidor de PKC. A presença do inibidor de PKC diminuiu as taxas de quebra de vesícula germinativa e a expansão das células do cumulus, sem alterar a esteroidogênese. Estes resultados demonstram que a PKC participa da via de sinalização da retomada da meiose. No experimento 2 foi avaliado se o EGF está envolvido na via regulada pela PKC. Os oócitos foram maturados in vitro, na presença ou ausência de LH e FSH, do inibidor de PKC e do EGF. O EGF foi capaz de reverter os efeitos do inibidor de PKC, aumentando as taxas de quebra de vesícula germinativa e a expansão de células do cumulus. Não foi possível detectar, nas condições deste experimento, a ativação das proteínas PKC e MAPK através do Western Blot. Este trabalho permite concluir que a via de sinalização da maturação de oócitos bovinos envolve a PKC e sugere a participação do EGF nesta via. / Oocyte quality is a limiting factor in female fertility and reflects its potential to the subsequent embryonic development. Molecular and biochemical alterations during the oocyte maturation process are needed to allow fecundation. Under gonadotropin influence, cascade of events occurs changing gene expression and follicle structure. Maturation depends on the interaction between oocyte and cumulus cells interaction, which provides factors for oocyte development and create the ideal microenvironment for the success of the maturation process. The FSH stimulation of meiosis resumption probably occurs through PKC activation. The signaling pathway of PKC might be involved by the mitogen activated protein kinase (MAPK) in oocytes and cumulus cells during FSH-LH induced maturation. Furthermore, MAPK regulates the epidermal growth factor (EGF) synthesis. The aim of the present study was to evaluate PKC function during bovine oocyte maturation and if its activity involves EGF. Two experiments were performed. In both experiments, the cell cycle progression was analyzed by Hoechst 33342 fluorescent dye. The cumulus cells expansion was performed using software Image Pro Plus 5.1 by the analysis of oocyte images taken in Olympus IX81 microscope. The highest diameter of each cumulus oocyte complex was recorded as the expansion value. The RIA and Western Blot techniques were used to measure progesterone concentration in the culture media and the PKC and MAPK activity, respectively. Data was analyzed by SigmaPlot software, version 12.2. The Shapiro-Wilk test was used to assess for normality and, when needed, the data was transformed. Student t tests were carried out to compare two treatments. Differences between more than two means were assessed by analysis of variance followed by Tukey test, considering P-value lower than 0.05 as statistically significant. Experiment 1 studied whether PKC function was stimulated by gonadotropins. FSH and LH were used for oocyte maturation in vitro, with or without PKC inhibitor. The presence of PKC inhibitor decreased germinal vesicle breakdown and the cumulus cells expansion, but did not alter the steroidogenesis. These results show that PKC participates in the signaling pathway of meiosis resumption. The Experiment 2 evaluated whether EGF influences PKC signaling pathway. The oocytes were matured in vitro, in the presence or absence of LH and FSH, PKC inhibitor and EGF. Epidermal Growth Factor was able to reverse PKC inhibitor effects, increasing germinal vesicle breakdown rates and cumulus cells expansion. The Western Blot technique was not able to detect PKC and MAPK activity, considering the conditions of this study. In conclusion, PKC is involved in the signaling pathway of bovine oocytes maturation and its pathway is mediated by EGF.

Page generated in 0.0344 seconds