• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

SYSTEM IDENTIFICATION OF A WASTE-FIRED CFB BOILER : Using Principal Component Analysis (PCA) and Partial Least Squares Regression modeling (PLS-R)

Hassling, Andreas, Flink, Simon January 2017 (has links)
Heat and electricity production along with waste management are two modern day challenges for society. One of the possible solution to both of them is the incineration of household waste to produce heat and electricity. Incineration is a waste-to-energy treatment process, which can reduce the need for landfills and save the use of more valuable fuels, thereby conserving natural resources. This report/paper investigates the performance and emissions of a municipal solid waste (MSW) fueled industrial boiler by performing a system identification analysis using Principle Component Analysis (PCA) and Partial Least Squares Regression (PLS-R) modeling. The boiler is located in Västerås, Sweden and has a maximum capacity of 167MW. It produces heat and electricity for the city of Västerås and is operated by Mälarenergi AB. A dataset containing 148 different boilers variables, measured with a one hour interval over 2 years, was used for the system identification analysis. The dataset was visually inspected to remove obvious outliers before beginning the analysis using a multivariate data analysis software called The Unscrambler X (Version 10.3, CAMO Software, Norway). Correlations found using PCA was taken in account during the PLSR modelling where models were created for one response each. Some variables had an unexpected impact on the models while others were fully logical regarding combustion theory. Results found during the system analysis process are regarded as reliable. Any errors may be due to outlier data points and model inadequacies.
2

Fraktionierung des Chemischen Sauerstoffbedarfs mithilfe von Extinktionsmessungen im UV/Vis-Spektralbereich

Weber, Steffen 21 April 2023 (has links)
Das Messverfahren der optischen Spektrophotometrie wird zur kontinuierlichen Messung der Abwasserqualität auf ihre Einsatztauglichkeit überprüft. Der chemische Sauerstoffbedarf (CSB) wird als zentraler Kennwert für die stoffliche Verschmutzung von Abwasser und für dessen Nachweis in Oberflächengewässern eingesetzt, welche es zu bestimmen galt. Dabei wird der Informationsgehalt über eine organische, summarische Kohlenstoffbelastung mittels einer zusätzlichen Fraktionierung erhöht. In einer Labormesskampagne werden auf der Grundlage von Respirationsversuchen Daten aus Extinktionswerten des UV/Vis-Spektrums und Referenzwerten (Standardanalyseparameter und simulierte Stoffkonzentrationen mithilfe des Activated Sludge Modell No. 1) generiert. Darauf aufbauend werden Kalibrationsmodelle für den CSB und einzelne Fraktionen entwickelt. Die Modelle werden mithilfe des Regressionsansatzes der Partial-Least-Squares entwickelt und im Rahmen eines Anwendungsbeispiels auf ihre Praxistauglichkeit überprüft. Als Ergebnis dieser Arbeit stehen Kalibrationsmodelle für den Einsatz im kommunalem Abwasser unter Trockenwetterbedingungen zur Verfügung. Die Vorhersagequalität nimmt mit zunehmender Differenzierung ab. Von einer Weiterverwendung der berechneten Äquivalentkonzentrationen für die CSB-Fraktionen (SS, XS, SI und XI), z. B. als Kalibriergröße für Stofftransportmodelle oder als Steuer- und Regelgröße, wird allerdings abgeraten. Als Ursache für die hohen Messungenauigkeiten wurde eine unzureichende Anpassung an die Veränderungen in der Abwasserzusammensetzung während eines Trockenwettertagesganges identifiziert. Mit einer erweiterten Datengrundlage, unter der Verwendung von Standardanalyseparametern (CSB, CSBmf und BSB) in einer Abwasserprobe, welche für den Ausschluss von Stoffverbindungen vor und nach einer respirativen Vorbehandlung bestimmt werden, wird eine höhere Modellgüte in Aussicht gestellt. Darüber hinaus wird ein Umdenken hinsichtlich statischer - hin zu dynamischen - Kalibrationsfunktionen für UV/Vis-Sensoren vorgeschlagen. Eine Generalisierbarkeit der entwickelten Kalibrationsmodelle auf weitere Wetterbedingungen, Messstandorte oder Sensoren wird nicht empfohlen.:Abbildungen VI Tabellen XIII Abkürzungen XV 1 Einleitung 1 1.1 Motivation 1 1.2 Zielstellung 2 2 Stand der Forschung 5 2.1 Kohlenstoffe 6 2.1.1 Zusammensetzung und Herkunft im häuslichen Abwasser 7 2.1.1.1 Fette 8 2.1.1.2 Proteine 8 2.1.1.3 Tenside 9 2.1.1.4 Phenole 10 2.1.1.5 Kohlenwasserstoffe 10 2.1.2 Fraktionierung von Kohlenstoffverbindungen 11 2.1.2.1 Chemischer Sauerstoffbedarf 12 2.1.2.2 Ansätze zur CSB-Fraktionierung 12 2.1.2.3 Stoffzusammensetzung einzelner CSB-Fraktionen 15 2.1.2.4 Messmethoden zur Bestimmung des CSB 18 2.2 Optische Spektroskopie 20 2.2.1 Grundlagen 20 2.2.1.1 Elektromagnetische Strahlung 20 2.2.1.2 Einordnung der optischen Spektroskopie 21 2.2.1.3 Lichtabsorption 21 2.2.1.4 Chemisch-physikalische Grundlagen 22 2.2.1.5 Mathematische Grundlagen 24 2.2.1.6 Extinktionsmessung 25 2.2.2 Online-Messtechnik 26 2.2.2.1 Sensoren /-hersteller 26 2.2.2.2 Kalibrierung 26 2.2.2.2.1 Kalibrierung der S::CAN MESSTECHNIK GmbH 27 2.2.2.2.2 Unabhängige Analyseverfahren zur Auswertung spektrophotometrischer Messreihen 28 2.2.2.3 Messung 29 2.2.2.3.1 Einstellungen und Voraussetzungen 29 2.2.2.3.2 Qualitative Einflussnahme von Störgrößen auf die spektroskopische Datenerfassung 30 2.2.3 Einsatz in der Siedlungswasserwirtschaft und Hydrologie 31 3 Versuchsdurchführung und Analytik 33 3.1 Messkampagnen 33 3.1.1 Labormessversuche 33 3.1.1.1 Respirationsversuch 34 3.1.1.1.1 Versuchsaufbau zum Respirationsversuch 35 3.1.1.1.2 Betriebshinweise Respirationsversuch 38 3.1.1.2 Verdünnungsversuch 41 3.1.1.2.1 Versuchsaufbau zum Verdünnungsversuch 42 3.1.1.2.2 Betriebshinweise Verdünnungsversuch 43 3.1.2 Feldmessversuch 43 3.1.2.1 Versuchsaufbau zum Feldmessversuch 44 3.1.2.2 Betriebshinweise Feldmessversuch 46 3.2 Abwasserproben: Aufbewahrung und Analytik 47 3.2.1 Konservierung und Probenvorbehandlung 48 3.2.2 Standardisierte Laboranalyseverfahren 49 3.2.2.1 CSB 49 3.2.2.2 Biologischer Sauerstoffbedarf BSBn 50 3.3 Mess- und Regelinstrumente 51 3.3.1 Optischer Multiparameter-Sensor 51 3.3.2 Luminescent Dissolved Oxygen-Sensor (LDO) 53 3.3.3 Peristaltik-Pumpe 54 3.3.4 Dispergierer 54 4 Untersuchungen zur Entwicklung und Anwendung von UV/Vis-Kalibrierungen 55 4.1 Statistische Verfahren zur Kalibrierung 55 4.1.1 Datengrundlage und Methoden 56 4.1.1.1 Datengrundlage 56 4.1.1.2 Multivariate Datenanalyse 57 4.1.1.2.1 Regressionsanalyse 58 4.1.1.2.1.1 Schätzung der Regressionsfunktion 59 4.1.1.2.2 Qualitätsprüfung 61 4.1.1.2.3 Prüfung der Modellprämissen 63 4.1.1.2.4 Multivariate Regressionsanalyse 66 4.1.1.3 Vergleich der Kalibrierverfahren 70 4.1.2 Ergebnisse 70 4.1.2.1 Regressionsansätze für UV/Vis-Kalibrierung 70 4.1.2.1.1 Partial-Least-Squares Regression (PLS-R) 70 4.1.2.1.2 Lasso-Regression 73 4.1.2.1.3 Herstellerkalibrierung (SCAN GmbH) 73 4.1.2.1.3.1 Anwendung der globalen Herstellerkalibrierung 73 4.1.2.1.3.2 Lokal angepasste Herstellerkalibrierung 74 4.1.3 Auswertungen 75 4.1.3.1 Tauglichkeit angewandter Regressionsansätze zur Entwicklung von UV/Vis-Kalibrierfunktionen 75 4.1.3.1.1 Vergleich der Vorhersagequalitäten zwischen Regressionsansätzen und Herstellerkali¬- brierung 75 4.1.3.1.2 Aussagekraft angewandter Regressionsmodelle 77 4.1.3.1.2.1 Regressionsfunktion und -koeffizienten 77 4.1.3.1.2.2 Modellprämissen 78 4.1.3.2 Identifizierung signifikanter WL oder -Bereiche 80 4.2 Fraktionierung von CSB-Verbindungen 81 4.2.1 Datengrundlage und Methoden 82 4.2.1.1 Laborwertmethode 83 4.2.1.2 Modellwertmethode 85 4.2.1.2.1 Respirometrische Messung 86 4.2.1.2.2 Sauerstoffverbrauchsrate 87 4.2.1.2.3 Modellberechnung 89 4.2.1.2.4 Simulationsmethode mit modifiziertem Activated Sludge Modell No. 1 92 4.2.1.2.5 Modellkalibrierung 95 4.2.1.2.6 Datenauswahl 96 4.2.1.3 Lichtabsorptionsmethode 96 4.2.2 Ergebnisse 97 4.2.2.1 Modellwertmethode mit ASM No. 1 97 4.2.2.2 Auswahl von Modelldaten 100 4.2.2.3 UV/Vis-Kalibrierfunktionen 101 4.2.2.3.1 CSB-Fraktionen 101 4.2.2.3.2 Vergleich MW- und LW-Modell 103 4.2.3 Auswertungen 104 4.2.3.1 Tauglichkeit von Simulationsergebnissen aus Modellwertmethode zur Entwicklung von Kalibrierfunktionen 104 4.2.3.2 Abweichende Vorhersagequalitäten zwischen den UV/Vis-Kalibrierfunktionen 106 4.2.3.3 Messunsicherheiten und Modellqualität 107 4.2.3.4 Signifikante Wellenlängen oder -bereiche für einzelne CSB-Fraktionen 109 4.3 Anwendungsbeispiel: Kohlenstoffumsatz entlang einer Fließstrecke 111 4.3.1 Datengrundlage und Methoden 112 4.3.1.1 Einsatz von UV/Vis-Messtechnik 115 4.3.1.1.1 Vergleichbarkeit bei Parallelbetrieb baugleicher Sensoren 115 4.3.1.1.1.1 Versuchsdurchführung 116 4.3.1.1.1.2 Berechnungsansätze 116 4.3.1.1.2 Lokale Kalibrierung 117 4.3.1.1.2.1 Univariat 118 4.3.1.1.2.2 Multivariat 118 4.3.1.2 Kohlenstoffumwandlung und -umsatz innerhalb des Durchflussreaktors 118 4.3.1.2.1 Vorverarbeitung von UV/Vis-Daten 120 4.3.1.2.2 Zeitsynchronisation mithilfe der Fließzeit 120 4.3.1.2.3 Bestimmung von stofflichen Veränderungen in einem Wasserpaket 121 4.3.2 Ergebnisse 122 4.3.2.1 Praxiseinsatz von UV/Vis-Messtechnik 122 4.3.2.1.1 Stabilität und Vergleichbarkeit von Messsignalen bei unterschiedlichen Sensoren 122 4.3.2.1.1.1 Messgüte 122 4.3.2.1.1.2 Sensoranpassung 124 4.3.2.1.2 UV/Vis-Kalibrationsfunktionen 125 4.3.2.1.2.1 Validierung LK-PLS-R 126 4.3.2.1.2.2 Lokale Nachkalibrierung LK-PLS-R 128 4.3.2.1.3 Anwendung entwickelter Kalibrationsmodelle auf Zeitreihen 130 4.3.2.2 Kohlenstoffumsatz 131 4.3.3 Auswertungen 135 4.3.3.1 Tauglichkeit von UV/Vis-Messtechnik für den Einsatz in der Kanalisation 135 4.3.3.1.1 Vorhersagegenauigkeit von Kalibrationsfunktionen 135 4.3.3.1.2 Abweichende Messergebnisse der Extinktion von einzelnen Sensoren 135 4.3.3.2 Veränderungen in den Konzentrationen einzelner Kohlenstofffraktionen entlang der Fließstrecke 136 5 Diskussion 139 6 Ausblick 151 7 Zusammenfassung 153 8 Literaturverzeichnis 157 A Anhang 171 A.1 Respirationsversuche CSB-Fraktionen 171 A.1.1 Quellcode - CSB-Fraktionierung 171 A.1.2 Respirationsversuche CSB-Fraktionen 175 A.1.3 Quellcode - PLS-Regression 178 A.1.4 UV/Vis-Kalibrierung - CSB-Fraktionen 180 A.1.5 Modellgüte 183 A.1.6 Modellprämissen 184 A.2 Feldmesskampagne 188 A.2.1 Sensorkompensation 188 A.2.2 Korrelationsplots 189 A.2.2.1 Validierung der Kalibrationsmodelle 189 A.2.2.2 Nachkalibrierung der Kalibrationsmodelle 192 A.2.2.2.1 univariat 192 A.2.3 Stoffliche Veränderungen in Wasserpaketen 198 A.2.4 Laboranalysen Stoffliche Veränderungen in Wasserpaketen 201 / Optical spectrophotometry is checked as measuring method for continuous monitoring of waste water quality. The chemical oxygen demand (COD) is used as a central parame-ter for the material assessment of waste water and for its detection in surface waters. The information value about an organic load is increased using an additional fractiona-tion. In a laboratory measurement campaign, data from extinction values of the UV/Vis spectrum and reference values are created (standard analysis parameters and simulated concentrations by using the Activated Sludge Model No. 1). Based on this calibration models for the COD and individual fractions are developed using the regression ap-proach of the partial least squares and their practical suitability is checked in the context of an application example. As a result of this work, calibration models for use in munici-pal wastewater under dry weather conditions, are available. The prediction quality de-creases with increasing differentiation. We advise against further use of the calculated equivalent concentrations for the COD fractions (SS, XS, SI und XI), e.g. as a calibration var-iable for mass transfer models or as a control and regulation variable. The reason for higher measurement uncertainties is identified as insufficient adaptation to the changing wastewater composition during a dry weather day. With an extended data basis, a higher model quality is promised: Standard analysis parameters (COD, CODmf and BOD) are de-termined in wastewater samples before and after respiratory pretreatment in order to be able to rule out substances. In addition, rethinking of static calibration functions for UV/Vis sensors is proposed towards dynamic methods. A generalization of calibration models to other weather conditions, measurement locations or sensors is not recom-mended.:Abbildungen VI Tabellen XIII Abkürzungen XV 1 Einleitung 1 1.1 Motivation 1 1.2 Zielstellung 2 2 Stand der Forschung 5 2.1 Kohlenstoffe 6 2.1.1 Zusammensetzung und Herkunft im häuslichen Abwasser 7 2.1.1.1 Fette 8 2.1.1.2 Proteine 8 2.1.1.3 Tenside 9 2.1.1.4 Phenole 10 2.1.1.5 Kohlenwasserstoffe 10 2.1.2 Fraktionierung von Kohlenstoffverbindungen 11 2.1.2.1 Chemischer Sauerstoffbedarf 12 2.1.2.2 Ansätze zur CSB-Fraktionierung 12 2.1.2.3 Stoffzusammensetzung einzelner CSB-Fraktionen 15 2.1.2.4 Messmethoden zur Bestimmung des CSB 18 2.2 Optische Spektroskopie 20 2.2.1 Grundlagen 20 2.2.1.1 Elektromagnetische Strahlung 20 2.2.1.2 Einordnung der optischen Spektroskopie 21 2.2.1.3 Lichtabsorption 21 2.2.1.4 Chemisch-physikalische Grundlagen 22 2.2.1.5 Mathematische Grundlagen 24 2.2.1.6 Extinktionsmessung 25 2.2.2 Online-Messtechnik 26 2.2.2.1 Sensoren /-hersteller 26 2.2.2.2 Kalibrierung 26 2.2.2.2.1 Kalibrierung der S::CAN MESSTECHNIK GmbH 27 2.2.2.2.2 Unabhängige Analyseverfahren zur Auswertung spektrophotometrischer Messreihen 28 2.2.2.3 Messung 29 2.2.2.3.1 Einstellungen und Voraussetzungen 29 2.2.2.3.2 Qualitative Einflussnahme von Störgrößen auf die spektroskopische Datenerfassung 30 2.2.3 Einsatz in der Siedlungswasserwirtschaft und Hydrologie 31 3 Versuchsdurchführung und Analytik 33 3.1 Messkampagnen 33 3.1.1 Labormessversuche 33 3.1.1.1 Respirationsversuch 34 3.1.1.1.1 Versuchsaufbau zum Respirationsversuch 35 3.1.1.1.2 Betriebshinweise Respirationsversuch 38 3.1.1.2 Verdünnungsversuch 41 3.1.1.2.1 Versuchsaufbau zum Verdünnungsversuch 42 3.1.1.2.2 Betriebshinweise Verdünnungsversuch 43 3.1.2 Feldmessversuch 43 3.1.2.1 Versuchsaufbau zum Feldmessversuch 44 3.1.2.2 Betriebshinweise Feldmessversuch 46 3.2 Abwasserproben: Aufbewahrung und Analytik 47 3.2.1 Konservierung und Probenvorbehandlung 48 3.2.2 Standardisierte Laboranalyseverfahren 49 3.2.2.1 CSB 49 3.2.2.2 Biologischer Sauerstoffbedarf BSBn 50 3.3 Mess- und Regelinstrumente 51 3.3.1 Optischer Multiparameter-Sensor 51 3.3.2 Luminescent Dissolved Oxygen-Sensor (LDO) 53 3.3.3 Peristaltik-Pumpe 54 3.3.4 Dispergierer 54 4 Untersuchungen zur Entwicklung und Anwendung von UV/Vis-Kalibrierungen 55 4.1 Statistische Verfahren zur Kalibrierung 55 4.1.1 Datengrundlage und Methoden 56 4.1.1.1 Datengrundlage 56 4.1.1.2 Multivariate Datenanalyse 57 4.1.1.2.1 Regressionsanalyse 58 4.1.1.2.1.1 Schätzung der Regressionsfunktion 59 4.1.1.2.2 Qualitätsprüfung 61 4.1.1.2.3 Prüfung der Modellprämissen 63 4.1.1.2.4 Multivariate Regressionsanalyse 66 4.1.1.3 Vergleich der Kalibrierverfahren 70 4.1.2 Ergebnisse 70 4.1.2.1 Regressionsansätze für UV/Vis-Kalibrierung 70 4.1.2.1.1 Partial-Least-Squares Regression (PLS-R) 70 4.1.2.1.2 Lasso-Regression 73 4.1.2.1.3 Herstellerkalibrierung (SCAN GmbH) 73 4.1.2.1.3.1 Anwendung der globalen Herstellerkalibrierung 73 4.1.2.1.3.2 Lokal angepasste Herstellerkalibrierung 74 4.1.3 Auswertungen 75 4.1.3.1 Tauglichkeit angewandter Regressionsansätze zur Entwicklung von UV/Vis-Kalibrierfunktionen 75 4.1.3.1.1 Vergleich der Vorhersagequalitäten zwischen Regressionsansätzen und Herstellerkali¬- brierung 75 4.1.3.1.2 Aussagekraft angewandter Regressionsmodelle 77 4.1.3.1.2.1 Regressionsfunktion und -koeffizienten 77 4.1.3.1.2.2 Modellprämissen 78 4.1.3.2 Identifizierung signifikanter WL oder -Bereiche 80 4.2 Fraktionierung von CSB-Verbindungen 81 4.2.1 Datengrundlage und Methoden 82 4.2.1.1 Laborwertmethode 83 4.2.1.2 Modellwertmethode 85 4.2.1.2.1 Respirometrische Messung 86 4.2.1.2.2 Sauerstoffverbrauchsrate 87 4.2.1.2.3 Modellberechnung 89 4.2.1.2.4 Simulationsmethode mit modifiziertem Activated Sludge Modell No. 1 92 4.2.1.2.5 Modellkalibrierung 95 4.2.1.2.6 Datenauswahl 96 4.2.1.3 Lichtabsorptionsmethode 96 4.2.2 Ergebnisse 97 4.2.2.1 Modellwertmethode mit ASM No. 1 97 4.2.2.2 Auswahl von Modelldaten 100 4.2.2.3 UV/Vis-Kalibrierfunktionen 101 4.2.2.3.1 CSB-Fraktionen 101 4.2.2.3.2 Vergleich MW- und LW-Modell 103 4.2.3 Auswertungen 104 4.2.3.1 Tauglichkeit von Simulationsergebnissen aus Modellwertmethode zur Entwicklung von Kalibrierfunktionen 104 4.2.3.2 Abweichende Vorhersagequalitäten zwischen den UV/Vis-Kalibrierfunktionen 106 4.2.3.3 Messunsicherheiten und Modellqualität 107 4.2.3.4 Signifikante Wellenlängen oder -bereiche für einzelne CSB-Fraktionen 109 4.3 Anwendungsbeispiel: Kohlenstoffumsatz entlang einer Fließstrecke 111 4.3.1 Datengrundlage und Methoden 112 4.3.1.1 Einsatz von UV/Vis-Messtechnik 115 4.3.1.1.1 Vergleichbarkeit bei Parallelbetrieb baugleicher Sensoren 115 4.3.1.1.1.1 Versuchsdurchführung 116 4.3.1.1.1.2 Berechnungsansätze 116 4.3.1.1.2 Lokale Kalibrierung 117 4.3.1.1.2.1 Univariat 118 4.3.1.1.2.2 Multivariat 118 4.3.1.2 Kohlenstoffumwandlung und -umsatz innerhalb des Durchflussreaktors 118 4.3.1.2.1 Vorverarbeitung von UV/Vis-Daten 120 4.3.1.2.2 Zeitsynchronisation mithilfe der Fließzeit 120 4.3.1.2.3 Bestimmung von stofflichen Veränderungen in einem Wasserpaket 121 4.3.2 Ergebnisse 122 4.3.2.1 Praxiseinsatz von UV/Vis-Messtechnik 122 4.3.2.1.1 Stabilität und Vergleichbarkeit von Messsignalen bei unterschiedlichen Sensoren 122 4.3.2.1.1.1 Messgüte 122 4.3.2.1.1.2 Sensoranpassung 124 4.3.2.1.2 UV/Vis-Kalibrationsfunktionen 125 4.3.2.1.2.1 Validierung LK-PLS-R 126 4.3.2.1.2.2 Lokale Nachkalibrierung LK-PLS-R 128 4.3.2.1.3 Anwendung entwickelter Kalibrationsmodelle auf Zeitreihen 130 4.3.2.2 Kohlenstoffumsatz 131 4.3.3 Auswertungen 135 4.3.3.1 Tauglichkeit von UV/Vis-Messtechnik für den Einsatz in der Kanalisation 135 4.3.3.1.1 Vorhersagegenauigkeit von Kalibrationsfunktionen 135 4.3.3.1.2 Abweichende Messergebnisse der Extinktion von einzelnen Sensoren 135 4.3.3.2 Veränderungen in den Konzentrationen einzelner Kohlenstofffraktionen entlang der Fließstrecke 136 5 Diskussion 139 6 Ausblick 151 7 Zusammenfassung 153 8 Literaturverzeichnis 157 A Anhang 171 A.1 Respirationsversuche CSB-Fraktionen 171 A.1.1 Quellcode - CSB-Fraktionierung 171 A.1.2 Respirationsversuche CSB-Fraktionen 175 A.1.3 Quellcode - PLS-Regression 178 A.1.4 UV/Vis-Kalibrierung - CSB-Fraktionen 180 A.1.5 Modellgüte 183 A.1.6 Modellprämissen 184 A.2 Feldmesskampagne 188 A.2.1 Sensorkompensation 188 A.2.2 Korrelationsplots 189 A.2.2.1 Validierung der Kalibrationsmodelle 189 A.2.2.2 Nachkalibrierung der Kalibrationsmodelle 192 A.2.2.2.1 univariat 192 A.2.3 Stoffliche Veränderungen in Wasserpaketen 198 A.2.4 Laboranalysen Stoffliche Veränderungen in Wasserpaketen 201
3

Phytochemical investigation of Acronychia species using NMR and LC-MS based dereplication and metabolomics approaches / Etude phytochimique d’espèces du genre Acronychia en utilisant des approches de déréplication et métabolomique basées sur des techniques RMN et SM

Kouloura, Eirini 28 November 2014 (has links)
Les plantes médicinales constituent une source inexhaustible de composés (des produits naturels - PN) utilisé en médecine pour la prévention et le traitement de diverses maladies. L'introduction de nouvelles technologies et méthodes dans le domaine de la chimie des produits naturels a permis le développement de méthodes ‘high throughput’ pour la détermination de la composition chimique des extraits de plantes, l'évaluation de leurs propriétés et l'exploration de leur potentiel en tant que candidats médicaments. Dernièrement, la métabolomique, une approche intégrée incorporant les avantages des technologies d'analyse moderne et la puissance de la bioinformatique s’est révélé un outil efficace dans la biologie des systèmes. En particulier, l'application de la métabolomique pour la découverte de nouveaux composés bioactifs constitue un domaine émergent dans la chimie des produits naturels. Dans ce contexte, le genre Acronychia de la famille des Rutaceae a été choisi sur la base de son usage en médecine traditionnelle pour ses propriétés antimicrobienne, antipyrétique, antispasmodique et anti-inflammatoire. Nombre de méthodes chromatographiques modernes, spectrométriques et spectroscopiques sont utilisées pour l'exploration de leur contenu en métabolites suivant trois axes principaux constituant les trois chapitres de cette thèse. En bref, le premier chapitre décrit l’étude phytochimique d’Acronychia pedunculata, l’identification des métabolites secondaires contenus dans cette espèce et l'évaluation de leurs propriétés biologiques. Le deuxième chapitre vise au développement de méthodes analytiques pour l'identification des dimères d’acétophénones (marqueurs chimiotaxonomiques du genre) et aux stratégies utilisées pour la déréplication de ces différents extraits et la caractérisation chimique des composés par UHPLC-HRMSn. Le troisième chapitre se concentre sur l'application de méthodologies métabolomique (RMN et LC-MS) pour l'analyse comparative (entre les différentes espèces, origines, organes), pour des études chimiotaxonomiques (entre les espèces) et pour la corrélation des composés contenus avec une activité pharmacologique. / Medicinal plants constitute an unfailing source of compounds (natural products – NPs) utilised in medicine for the prevention and treatment of various deceases. The introduction of new technologies and methods in the field of natural products chemistry enabled the development of high throughput methodologies for the chemical composition determination of plant extracts, evaluation of their properties and the exploration of their potentials as drug candidates. Lately, metabolomics, an integrated approach incorporating the advantages of modern analytical technologies and the power of bioinformatics has been proven an efficient tool in systems biology. In particular, the application of metabolomics for the discovery of new bioactive compounds constitutes an emerging field in natural products chemistry. In this context, Acronychia genus of Rutaceae family was selected based on its well-known traditional use as antimicrobial, antipyretic, antispasmodic and anti-inflammatory therapeutic agent. Modern chromatographic, spectrometric and spectroscopic methods were utilised for the exploration of their metabolite content following three basic axes constituting the three chapters of this thesis. Briefly, the first chapter describes the phytochemical investigation of Acronychia pedunculata, the identification of secondary metabolites contained in this species and evaluation of their biological properties. The second chapter refers to the development of analytical methods for the identification of acetophenones (chemotaxonomic markers of the genus) and to the dereplication strategies for the chemical characterisation of extracts by UHPLC-HRMSn. The third chapter focuses on the application of metabolomic methodologies (LC-MS & NMR) for comparative analysis (between different species, origins, organs), chemotaxonomic studies (between species) and compound-activity correlations.

Page generated in 0.0223 seconds