• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Descritor de voz invariante ao ruído

Viana, Hesdras Oliveira 26 February 2013 (has links)
Submitted by João Arthur Martins (joao.arthur@ufpe.br) on 2015-03-10T19:07:24Z No. of bitstreams: 2 Dissertaçao Hesdras Viana.pdf: 2998238 bytes, checksum: de42b675472ac4632a3a3c04688a77d5 (MD5) license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) / Approved for entry into archive by Daniella Sodre (daniella.sodre@ufpe.br) on 2015-03-10T19:43:06Z (GMT) No. of bitstreams: 2 Dissertaçao Hesdras Viana.pdf: 2998238 bytes, checksum: de42b675472ac4632a3a3c04688a77d5 (MD5) license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) / Made available in DSpace on 2015-03-10T19:43:06Z (GMT). No. of bitstreams: 2 Dissertaçao Hesdras Viana.pdf: 2998238 bytes, checksum: de42b675472ac4632a3a3c04688a77d5 (MD5) license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Previous issue date: 2013-02-26 / Extrair características da fala é uma etapa fundamental para os sistemas de reconhecimento de voz. É através dos descritores que extraímos a energia do sinal, a frequência fundamental (pitch) e a estrutura dos formantes que serão utilizados como identificadores para cada palavra pronunciada. Descritores como MFCC (Mel-Frequency Cepstral Coefficient), RASTA-PLP (RelAtive SpecTrAl - Perceptual Linear Predictive) e PNCC (Power Normalized Cepstral Coefficient) são muitos utilizados no estado da arte na área de reconhecimento de voz, porém, essas técnicas não conseguem apresentar bons resultados quando expostos a amostras com presença de ruído, variabilidade de locutor e fala contínua. O objetivo deste trabalho é desenvolver um descritor para a fala que seja invariante ao ruído, ambiente e locução. Para isso, fizemos um estudo dos descritores de voz mais utilizados na literatura, identificando as vantagens e desvantagens, expondo a situações variadas. Para avaliação das técnicas, utilizamos a base NOIZEUS (Noisy Speech Corpus) e dois classificadores: HMM (Hidden Markov Models) e SVM (Support Vector Machine). Essa base tem como característica a presença de ruído variando de 0dB, 5dB, 10dB e 15dB, gravada em diversos ambientes. A utilização dos classificadores serviu para validar os descritores de voz. O descritor proposto, chamado de MINERS (Model Invariant to Noise and Environment and Robust for Speech), apresentou melhores resultados entre todos os descritores avaliados (MFCC, MFCC combinado com Wavelet Denoising, RASTAPLP e PNCC). A abordagem que obteve maior sucesso foi a utilização do MINERS com o classificador SVM.
2

[en] CONTINUOUS SPEECH RECOGNITION BY COMBINING MFCC AND PNCC ATTRIBUTES WITH SS, WD, MAP AND FRN METHODS OF ROBUSTNESS / [pt] RECONHECIMENTO DE VOZ CONTINUA COMBINANDO OS ATRIBUTOS MFCC E PNCC COM METODOS DE ROBUSTEZ SS, WD, MAP E FRN

CHRISTIAN DAYAN ARCOS GORDILLO 09 June 2014 (has links)
[pt] O crescente interesse por imitar o modelo que rege o processo cotidiano de comunicação humana através de maquinas tem se convertido em uma das áreas do conhecimento mais pesquisadas e de grande importância nas ultimas décadas. Esta área da tecnologia, conhecida como reconhecimento de voz, em como principal desafio desenvolver sistemas robustos que diminuam o ruído aditivo dos ambientes de onde o sinal de voz é adquirido, antes de que se esse sinal alimente os reconhecedores de voz. Por esta razão, este trabalho apresenta quatro formas diferentes de melhorar o desempenho do reconhecimento de voz contınua na presença de ruído aditivo, a saber: Wavelet Denoising e Subtração Espectral, para realce de fala e Mapeamento de Histogramas e Filtro com Redes Neurais, para compensação de atributos. Esses métodos são aplicados isoladamente e simultaneamente, afim de minimizar os desajustes causados pela inserção de ruído no sinal de voz. Alem dos métodos de robustez propostos, e devido ao fato de que os e conhecedores de voz dependem basicamente dos atributos de voz utilizados, examinam-se dois algoritmos de extração de atributos, MFCC e PNCC, através dos quais se representa o sinal de voz como uma sequência de vetores que contêm informação espectral de curtos períodos de tempo. Os métodos considerados são avaliados através de experimentos usando os software HTK e Matlab, e as bases de dados TIMIT (de vozes) e NOISEX-92 (de ruído). Finalmente, para obter os resultados experimentais, realizam-se dois tipos de testes. No primeiro caso, é avaliado um sistema de referência baseado unicamente em atributos MFCC e PNCC, mostrando como o sinal é fortemente degradado quando as razões sinal-ruıdo são menores. No segundo caso, o sistema de referência é combinado com os métodos de robustez aqui propostos, analisando-se comparativamente os resultados dos métodos quando agem isolada e simultaneamente. Constata-se que a mistura simultânea dos métodos nem sempre é mais atraente. Porem, em geral o melhor resultado é obtido combinando-se MAP com atributos PNCC. / [en] The increasing interest in imitating the model that controls the daily process of human communication trough machines has become one of the most researched areas of knowledge and of great importance in recent decades. This technological area known as voice recognition has as a main challenge to develop robust systems that reduce the noisy additive environment where the signal voice was acquired. For this reason, this work presents four different ways to improve the performance of continuous speech recognition in presence of additive noise, known as Wavelet Denoising and Spectral Subtraction for enhancement of voice, and Mapping of Histograms and Filter with Neural Networks to compensate for attributes. These methods are applied separately and simultaneously two by two, in order to minimize the imbalances caused by the inclusion of noise in voice signal. In addition to the proposed methods of robustness and due to the fact that voice recognizers depend mainly on the attributes voice used, two algorithms are examined for extracting attributes, MFCC, and PNCC, through which represents the voice signal as a sequence of vectors that contain spectral information for short periods of time. The considered methods are evaluated by experiments using the HTK and Matlab software, and databases of TIMIT (voice) and Noisex-92 (noise). Finally, for the experimental results, two types of tests were carried out. In the first case a reference system was assessed based on MFCC and PNCC attributes, only showing how the signal degrades strongly when signal-noise ratios are higher. In the second case, the reference system is combined with robustness methods proposed here, comparatively analyzing the results of the methods when they act alone and simultaneously. It is noted that simultaneous mix of methods is not always more attractive. However, in general, the best result is achieved by the combination of MAP with PNCC attributes.

Page generated in 0.0945 seconds