• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 942
  • 243
  • 145
  • 112
  • 77
  • 31
  • 25
  • 24
  • 11
  • 7
  • 6
  • 6
  • 5
  • 5
  • 4
  • Tagged with
  • 1911
  • 253
  • 230
  • 182
  • 172
  • 140
  • 129
  • 126
  • 111
  • 97
  • 96
  • 95
  • 91
  • 91
  • 83
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
221

Studies of polarization-independent liquid-crystal Fresnel lenses with high diffraction efficiency

Wang, Jhong-yuan 03 September 2009 (has links)
This study proposes a polarization-independent liquid-crystal Fresnel lens using twisted nematic liquid crystals (TN-LCs) with two electrodes structure. A photoresist type has high diffraction efficiency, high diffraction efficiency and good polarization independence characteristic. However, its diffraction cannot be completely switched off. A patterned electrode type has the characteristics of the switch-off and good polarization independence. However, it has low diffraction efficiency. We improve the patterned electrode type with two electrodes structure. Experimental results reveal that LC Fresnel lens using the TN-LC with two electrode structures has high diffraction efficiency and a good polarization-independent characteristic.
222

Ferroelectricity in free niobium clusters

Moro, Ramiro Alfredo, January 2003 (has links) (PDF)
Thesis (Ph. D.)--School of Physics, Georgia Institute of Technology, 2004. Directed by Walter A. de Heer. / Vita. Includes bibliographical references (leaves 84-90).
223

Fluorescence anisotropy near-field scanning optical microscopy (FANSOM) : a new technique for biological microviscometry /

Reitz, Frederick B. January 2001 (has links)
Thesis (Ph. D.)--University of Washington, 2001. / Vita. Includes bibliographical references (leaves 89-94).
224

Solid state NMR cross polarization schemes for peptide samples oriented in hydrated phospholipid bilayers

Kim, Hyeongnam. Cross, Timothy A. January 2003 (has links)
Thesis (M.S.)--Florida State University, 2003. / Advisor: Dr. Timothy A. Cross, Florida State University, College of Arts and Sciences, Dept. of Chemistry and Biochemistry. Title and description from dissertation home page (viewed Mar. 4, 2004). Includes bibliographical references.
225

Bio-inspired nanophotonics : manipulating light at the nanoscale with plasmonic metamaterials

Zhao, Yang, active 21st century 14 July 2014 (has links)
Metals interact very differently with light than with radio waves and finite conductivities and losses often limit the way that RF concepts can be directly transferred to higher frequencies. Plasmonic materials are investigated here for various optical applications, since they can interact, confine and focus light at the nanoscale; however, regular plasmonic devices are severely limited by frequency dispersion and absorption, and confined signals cannot travel along plasmonic lines over few wavelengths. For these reasons, novel concepts and materials should be introduced to successfully manipulate and radiate light in the same flexible way we operate at lower frequencies. In line with these efforts, optical metamaterials exploit the resonant wave interaction of collections of plasmonic nanoparticles to produce anomalous light effects, beyond what naturally available in optical materials and in their basic constituents. Still, these concepts are currently limited by a variety of factors, such as: (a) technological challenges in realizing 3-D bulk composites with specific nano-structured patterns; (b) inherent sensitivity to disorder and losses in their realization; (c) not straightforward modeling of their interaction with nearby optical sources. In this study, we develop a novel paradigm to use single-element nanoantennas, and composite nanoantenna arrays forming two-dimensional metasurfaces and three-dimensional metamaterials, to control and manipulate light and its polarization at the nanoscale, which can possibly bypass the abovementioned limitations in terms of design procedure and experimental realization. The final design of some of the metamaterial concepts proposed in this work was inspired by biological species, whose complex structure can exhibit superior functionalities to detect, control and manipulate the polarization state of light for their orientation, signaling and defense. Inspired by these concepts, we theoretically investigate and design metasurfaces and metamaterial models with the help of fully vectorial numerical simulation tools, and we are able to outline the limitations and ultimate conditions under which the average optical surface impedance concept may accurately describe the complex wave interaction with planar plasmonic metasurfaces. We also experimentally explore various technological approaches compatible with these goals, such as the realization of lithographic single-element nanoantenna and nanoantenna arrays with complex circuit loads, periodic arrays of plasmonic nanoparticles or nanoapertures, and stacks of rotated plasmonic metasurfaces. At the conclusion of this effort, we have theoretically analyzed, designed and experimentally realized and characterized the feasibility of using discrete metasurfaces to realize phenomena and performance that are not available in natural materials, oftentimes inspired by the biological world. / text
226

Polarimetric analysis of anisotropic tissue using polarization-sensitive optical coherence tomography (PS-OCT)

Park, Jesung 28 August 2008 (has links)
Not available / text
227

Molecular-scale understanding of electronic polarization in organic molecular crystals

Ryno, Sean Michael 21 September 2015 (has links)
Organic electronic materials, possessing conjugated π-systems, are extensively used as the active layers in organic electronic devices, where they are responsible for charge transport. In this dissertation, we employ a combination of quantum-mechanical and molecular- mechanics methods to provide insight into how molecular structure, orientation, packing, and local molecular environment influence the energetic landscape experienced by an excess charge in these organic electronic materials. We begin with an overview of charge transport in organic electronic materials with a focus on electronic polarization while discussing recent models, followed by a review of the computational methods employed throughout our investigations. We provide a bottom-up approach to the problem of describing electronic polarization by first laying the framework of our model and comparing calculated properties of bulk materials to available experimental data and previously proposed models. We then explore the effects of changing the electronic structure of our systems though perfluorination, and investigate the effects of modifying the crystalline packing through the addition of bulky functional groups while investigating how the non-bonded interactions between molecular neighbors change in different packing motifs. As interfaces are common in organic electronics and important processes such as charge transport and charge separation occur at these interfaces, we model organic-vacuum and organic-organic interfaces to determine the effect changing the environment from bulk to interface has on the electronic polarization. We first investigate the effects of removing polarizable medium adjacent to the charge carrier and then, by modeling a realistic organic- organic interface in a model solar cell, probe the environment of each molecular site at the interface to gain a more complete understanding of the complex energetic landscape. Finally, we conclude with a study of the non-bonded interactions in linear oligoacene dimers, model π-conjugated materials, to assess the impact of dimer configuration and acene length on the intermolecular interaction energy, and highlight the importance of dispersion and charge penetration to these systems.
228

Induced polarization: Electrochemistry, fractal geometry, and geohydrologic applications.

Fink, James Brewster. January 1989 (has links)
The application of spectral induced polarization (SIP) to geohydrologic and geotechnical problems is considered. Some fundamental electrochemical characteristics of sulfides are reviewed. An alternate theory of the underlying cause of IP is presented. A modified field method is proposed. Two field sites are studied. Prevailing electrochemical thought is that most sulfides, especially pyrite and chalcopyrite, have passivating surface coatings. With this thought in mind, existing geophysically-oriented electrochemical measurements may be reinterpreted quite differently than has previously been done. Large impedances at low frequencies have traditionally been attributed by geophysicists to diffusional phenomena related to rapid reactions occurring at the sulfide surface. Large impedances at low frequencies with clays have traditionally been attributed to restrained ionic diffusion between zones of clay particles. Although they appear to be due to quite different mechanisms, both of these low frequency dispersions may be explained by a single rate limiting mechanism. Using fractal geometry, the large low frequency dispersions observed on sulfides may be explained by distributed high charge-transfer resistances on rough surfaces. With high surface resistances sulfides may behave like insulating clay particles and allow charge separation to occur in surface conduction current flow. Although displacement currents may flow in sulfides they are considered to be minimal in comparison to the surface conduction currents. The concept of a common polarization phenomenon allows the previous studies on rock samples containing clay particles and/or sulfides to be equated on the basis of particle size. With clay-coated sand grains it may be possible to estimate intrinsic hydraulic conductivity based on the interpreted polarizable grain size. Aquifers, and partially water saturated zones, may be IP targets if they have small amounts of polarizable clay minerals. Aquifer detection and grain size estimation are demonstrated. Theoretical work and field studies show the advantages of using a modified dipole-dipole array and data presentation methods. The large amounts of data gathered during broad-band SIP surveys are demonstrated to be very useful in layered-earth geohydrologic problems. The higher frequency data contain much earth-structure information, are easily gathered, and allow immediate qualitative structural interpretation. Lower frequency data contain information useful in aquifer characterization.
229

Polarization behaviour on microfabricated metallic gas-diffusion electrode structures

鄧其禮, Tang, Ki-lai. January 1992 (has links)
published_or_final_version / Chemistry / Master / Master of Philosophy
230

Polarization transfer of electromagnetic waves in inhomogeneous magnetized plasma

鄭恢俊, Cheng, Fai-tsun. January 1976 (has links)
published_or_final_version / Physics / Doctoral / Doctor of Philosophy

Page generated in 0.0254 seconds