• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 942
  • 243
  • 145
  • 112
  • 77
  • 31
  • 25
  • 24
  • 11
  • 7
  • 6
  • 6
  • 5
  • 5
  • 4
  • Tagged with
  • 1911
  • 253
  • 230
  • 182
  • 172
  • 140
  • 129
  • 126
  • 111
  • 97
  • 96
  • 95
  • 91
  • 91
  • 83
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
261

Polarimetric analysis of anisotropic tissue using polarization-sensitive optical coherence tomography (PS-OCT)

Park, Jesung. January 1900 (has links) (PDF)
Thesis (Ph. D.)--University of Texas at Austin, 2006. / Vita. Includes bibliographical references.
262

Optical measurements of the microphysical properties of aerosol and small cloud particles in the CLOUD project

Nichman, Leonid January 2017 (has links)
Clouds play an important role in precipitation, solar radiation budget and electrification of Earth's atmosphere. The presence of small ice crystals in clouds and their morphology can complicate parametrisation and climate modelling, consequently leading to a net cooling feedback on climate. In situ airborne measurements provide single particle characterisation with high temporal and spatial resolution allowing better understanding of atmosphericprocesses of ice nucleation and growth. Simulations of the preindustrial clouds and accurate characterisation and comparison of the instruments require a well-controlled and often pristine environment. The experimental chamber setup allows simulations of these and other conditions. The microphysical features of the micrometric ice particles in clouds were examined in a laboratory setup, at numerous sub-zero temperatures [-10 to -50 ⁰C]. The following instruments were sampling the content of the CLOUD chamber air volume: Cloud and Aerosol Spectrometer with Polarisation (CASPOL), Particle Phase Discriminator mark 2 (PPD-2K, Karlsruhe edition), 3-View Cloud Particle Imager (3V-CPI), and the Scattering-Intensity-Measurements-for-the-Optical-detectioN-of-icE (SIMONE-Junior). Cluster analysis was applied to the data collected with CASPOL and compared with results from the other probes. We were able to discriminate and map the aerosol and cloud particles in the pristine chamber environment using polarisation ratios (Dpol/Backscatter and Dpol/Forwardscatter) of the scattered light. We demonstrate the sensitivity of the instruments in detecting secondary organic aerosol (SOA) phase transitions. Then, we show the ability of the viscous SOA to nucleate ice in a series of SPectrometer for Ice Nuclei (SPIN) measurements. The detected viscous SOA ice nucleation efficiency may affect global modelling and estimations of ice water content in the atmosphere. Subsequently, the analysis and discrimination technique used in the CLOUD chamber was applied to airborne measurements to test its efficiency and to retrieve the composition of clouds. Data from four flight campaigns on board of the FAAM BAe-146 were analysed: Aerosol-Cloud Coupling and Climate Interactions in the Arctic (ACCACIA), COnvective-Precipitation-Experiment (COPE) in south England, CIRrus Coupled Cloud-Radiation EXperiment (CIRCCREX), and PIKNMIX in Scotland. In these and other flights, we were able to identify unique clusters such as salts, minerals, organics, volcanic ash, water and ice, confirming some of the offline laboratory elemental analysis results, and providing complementary information. Single particle polarisation measurements were compared with bulk depolarisation, diffraction patterns, and imaging. Most of the optical instruments still suffer from ambiguity in phase derivation (i.e. water/ice) of optically spherical small shapes. We discuss some of the limitations of optical cloud particle discrimination in different ambient conditions and offer possible solutions to reduce the uncertainty, e.g., surface complexity derivation from scatteringpatterns. Our findings will help to develop better instruments and improve the models which are used for weather forecasts and climate change predictions.
263

NOVEL EXPERIMENTAL APPROACHES AND THEORETICAL MODELS FOR IMPROVING SENSITIVITY AND INFORMATION CONTENT OF NMR AND MRI SPECTROSCOPY

He, Ping 01 December 2013 (has links)
The ongoing effort to improve the sensitivity and information content of NMR spectroscopy and MRI has important implications in scientific research and medical diagnostics. In this dissertation, a variety of approaches have been investigated and expanded on in an effort to contribute to this field. First, cryptophanes are cage-shaped molecules that have previously been used to encapsulate molecules of interest for a number of potential applications--including gas sensing and biosensing. In one set of studies, encapsulation of molecular hydrogen gas (H2) has shown different behavior compared to other small organic molecules in C111 (up until now, the smallest cryptophane). The transient, non-covalent binding was studied by variable-temperature NMR at different fields up to 950 MHz. A mathematical model that considers multiple-H2 binding was developed to better understand the physics and binding process, with predictions compared to experimental data (and rationalized in light of quantum chemical calculations on possible H2@C111 complexes). To our knowledge, C111 is the only system to reversibly trap multiple H2 gas molecules non-covalently under mild conditions. In a second series of studies, the interaction of laser-polarized xenon and a water-soluble cryptophane was studied. Despite the low concentration of xenon in aqueous solution, it was possible to achieve polarization transfer from xenon to cryptophane spins via the SPINOE (spin-polarization induced nuclear Overhauser effect). The SPINOE enhancements, along with the 129Xe NMR spectra, provide information about the interaction of the Xe-cryptophane complex (variants of which are now used in so-called xenon biosensors). This was our first in-house successful application of hyperpolarized xenon as a signal source for the spins of other molecules, leading the way to a number of ongoing studies. Although the absolute NMR enhancements obtained via the SPINOE were small, much larger enhancements were studied in a technique that uses para-hydrogen (pH2)--a spin isomer of normal molecular hydrogen)--as the source of spin order. As with the xenon experiments (and the H2 binding experiments), pH2 must be delivered as a gas to a sealed sample prior to performing the NMR experiments. Parahydrogen-induced polarization (PHIP) is an emerging field in enhancing the sensitivity in NMR experiments and may play an important role in MRI studies. Within this field a very recent phenomena of signal amplification by reversible exchange (SABRE) was investigated. The reproducibility of this recent discovery has been examined and new conclusions about the mechanism of this technique are delineated. NMR signal enhancements of nearly ~400-fold are reported. Moreover, a new water soluble NHC-Iridium catalyst was synthesized and investigated in SABRE related studies. We also report the first studies of SABRE-enhancement in biologically tolerable solvents--opening a door to the development of SABRE-hyperpolarized metabolic contrast agents for subsecond molecular imaging in the body. Although much of the above work was motivated by the desire to improve NMR/MRI sensitivity enhancement, other efforts concerned the other side of the equation--improving NMR/MRI information content. The next section concerns our efforts to investigate use of Variable-Angle (VA) NMR to study composite liquid crystal (LC) media comprised of stretched polyacrylamide gels (SAG) and embedded bacteriophage Pf1 particles. This in situ combination exploited the apparent interference between the different solute-aligning properties of the two LC components--yielding composite media with alignment properties that can differ in a tunable manner from those obtained with each medium alone. Characterization of alignment of both large and small molecules provides more insight into the nature of solute alignment that those composite phases introduce--with the goal of developing this approach as a new technique for studying molecular structure and dynamics via the dipolar and quadrupolar couplings that are restored in liquid-crystalline media. Finally the use of SPIONS--superparamagnetic iron oxide nanoparticles--as contrast agents is a relatively new approach to enhance information content in MRI studies; this is particularly true for SPIONs that have been surface-functionalized to achieve an environment-sensitive MR response. Novel surface-functionalized SPIONs were investigated by examining their effect on nuclear spin relaxation in aqueous environments simulating bodily tissues. More specifically, the pH and ionic strength dependent properties of selected dendron-functionalized and polymer-functionalized SPIONs have been examined. Of particular interest to this dissertation is how environment-mediated transient clustering of the SPIONs gives rise to changes in so-called transverse (homogeneous) spin relaxation rates as measured by following the decay of MR signals detected after the application of a series of radio-frequency (RF) pulses. In order to better understand these effects in the context of the SPIONs' behavior, a mathematical model is under development whose predictions are compared with experimental data. Aspects of the model are also compared to transmission electron micrography (TEM) and dynamic light scattering (DLS).
264

Partisan Polarization and Voter Turnout in U.S. Elections

January 2016 (has links)
abstract: A large amount of research examines the effect of partisan polarization on the institution of Congress, yet we know remarkably little about this political phenomenon’s precise effect on the political behavior of the American electorate. Some scholars argue that polarization is healthy for democracy because it allows political elites to send clear cues to the mass public, but other scholars postulate that polarization is bad for democracy. Decades of research on voter turnout resulted in a vast accumulation of knowledge on the subject. However, scholars must pay greater attention to data collection and measurement strategies because the prevalent technique to quantify voter turnout artificially deflates participation rates. I take two paths to uncover the effects of partisanship on the decision to vote. From the micro perspective, I utilize a variety of partisanship measures based on survey data. From the aggregate perspective, I argue that calculating voter turnout based on the voting eligible population (VEP) is a superior measurement strategy to other techniques. I adoopt a VEP measure of voter turnout for state-wide races (1994-2010). The results suggest that polarization is an important factor that increases voter turnout at both the individual and aggregate levels. / Dissertation/Thesis / Doctoral Dissertation Political Science 2016
265

PPLN-waveguide-based polarization entangled QKD simulator

Gariano, John, Djordjevic, Ivan B. 30 August 2017 (has links)
We have developed a comprehensive simulator to study the polarization entangled quantum key distribution (QKD) system, which takes various imperfections into account. We assume that a type-II SPDC source using a PPLN-based nonlinear optical waveguide is used to generate entangled photon pairs and implements the BB84 protocol, using two mutually unbiased basis with two orthogonal polarizations in each basis. The entangled photon pairs are then simulated to be transmitted to both parties; Alice and Bob, through the optical channel, imperfect optical elements and onto the imperfect detector. It is assumed that Eve has no control over the detectors, and can only gain information from the public channel and the intercept resend attack. The secure key rate (SKR) is calculated using an upper bound and by using actual code rates of LDPC codes implementable in FPGA hardware. After the verification of the simulation results, such as the pair generation rate and the number of error due to multiple pairs, for the ideal scenario, available in the literature, we then introduce various imperfections. Then, the results are compared to previously reported experimental results where a BBO nonlinear crystal is used, and the improvements in SKRs are determined for when a PPLN-waveguide is used instead.
266

A VLBI polarisation study of 43 GHZ SiO masers towards VY CMA

Richter, Laura January 2006 (has links)
This thesis reports the calibration, imaging and analysis of one epoch of VLBI observations of the v (italics) = J (italics) = 1-0 transition of SiO towards VY CMa. Full polarisation information was recorded, allowing high resolution synthesis maps of each of the four Stokes parameters to be produced. A total of 81 maser components were extracted from the total intensity map, each approximately 1 mas in size. The emission spans approximately 100 x 80 mas in right ascension and declination and is concentrated to the east. The maser component positions were fitted to a ring of radius ~ 3.2R₊ (italics), or 7.2 x 1O¹⁴ cm for a stellar distance of 1.5 kpc. If the stellar position is assumed to be the centre of this ring then almost all of the maser components fall within the inner dust shell radius, which is at ~ 5R (italics)ϰ All of the maser components fall between 1.5R (italics)ϰ and 6R (italics)ϰ. A velocity gradient with position angle was observed in the sparsely filled western region of the maser ring. If interpreted as evidence of shell rotation, this gradient implies a rotational velocity of v (italics) rot (subscirpt) sin i (italics) = 18 km.s⁻¹. The fractional circular and linear polarisations of the maser spots were derived from the Stokes parameter maps. The mean fractional circular polarisation of the masers components was ~ 2 percent and the median fractional linear polarisation was ~ 6 percent, with many spots displaying over ~ 30 percent linear polarisation. The mean circular polarisation implies a magnetic field of ~ 4 G in the SiO maser region if the polarisation is due to Zeeman splitting. Two maser components display a rotation of linear polarisation position angle with velocity, possibly implying a connection between the magnetic field and the velocity field variations in the region of these components.
267

Single-end reflectometric measurements of polarization-mode dispersion in single-mode optical fibres

Fosuhene, Samuel Kofi January 2013 (has links)
In this thesis two novel single-end methods are applied to measure and characterize polarization mode dispersion in single mode optical fibres. Polarization mode dispersion (PMD) is an important factor negatively affecting the successful implementation of high speed long haul optical fibre networks operating at bit rates of 10Gb/s and above. PMD measurements are thus important for quality control during manufacturing and cabling processes. It is also useful for network operators planning to upgrade bitrates in existing networks to 10Gb/s and beyond. In an optical fibre link, sections with particularly high PMD may act to increase the entire PMD of the link. Identifying and replacing such sections can greatly reduce the PMD of the link. PMD measurements can be forward or single-end. In forward measurements, both ends of the fibre are used for input and detection. In single-end configuration, only one end of the fibre is used. For this reason, single-end measurements are more practical for the field where fibre ends are situated several kilometres apart. Single-end techniques can be implemented with a continuous wave for non-local PMD measurements (by Fresnel reflection). If a pulsed wave is used, local measurements can be achieved (by total power due to Rayleigh scattering). Two single-end schemes, one based on Fresnel reflection and the other due to Rayleigh scattering have been applied to measure non-local and local PMD of standard single mode optical fibres. For the non-local PMD measurements, the general interferometric technique (GINTY) was modified to operate in a round-trip configuration. In this configuration, the fibre was treated as a concatenation of two identical fibre segments. Three different sets of fibres were investigated, each set representing a particular mode coupling regime. For polarization maintaining fibres, (PMFs), with no mode coupling, a factor of two was found between forward and single-end measurements. For long single mode fibres in the long length regime, the factor was 1.4. For a combination of PMF and single mode fibres, a factor of 1.6 was obtained. The method which is accurate, repeatable, low cost and robust is very suitable for field applications. The second method is the polarization optical time domain reflectometric (P-OTDR) technique. This technique performs local birefringence measurements by measuring the evolution of the states of polarization (SOP). The birefringence information from such measurements was extracted and analysed to characterise four different fibres. Beat lengths and correlation lengths extracted from the P-OTDR were used to calculate the differential group delay (DGD) of the fibres. Next an expression for the root-mean-square differential group delay was derived and applied to the birefringence measurements to calculate the DGDs at a single wavelength. This method which operates at a single wavelength has a huge advantage. Firstly it is able to measure completely all the fibre characteristic parameters. Secondly it can measure mean DGD, root mean square DGD and instantaneous DGD. A plot of instantaneous DGD vs. length enables one to identify and eliminate sections with particularly high DGD. Finally since the P-OTDR system operates with a single wavelength, real time monitoring of PMD is possible via multiplexing. The results obtained are repeatable, accurate and are in good agreement with the standard Jones Matrix Eigenanalysis (JME) technique.
268

Polarization mode dispersion emulation and the impact of high first-order PMD segments in optical telecommunication systems

Musara, Vitalis January 2009 (has links)
In this study, focus is centred on the measurement and emulation of first-order (FO-) and second-order (SO-) polarization mode dispersion (PMD). PMD has deleterious effects on the performance of high speed optical transmission network systems from 10 Gb/s and above. The first step was characterising deployed fibres for PMD and monitoring the state of polarization (SOP) light experiences as it propagates through the fibre. The PMD and SOP changes in deployed fibres were stochastic due to varying intrinsic and extrinsic perturbation changes. To fully understand the PMD phenomenon in terms of measurement accuracy, its complex behaviour, its implications, mitigation and compensation, PMD emulation is crucial. This thesis presents emulator designs which fall into different emulator categories. The key to these designs were the PMD equations and background on the PMD phenomenon. The cross product from the concatenation equation was applied in order to determine the coupling angle β (between 0o and 180o) that results in the SO-PMD of the emulator designs to be either adjustable or fixed. The digital delay line (DDL) or single polarization maintaining fibre (PMF) section was used to give a certain amount of FO-PMD but negligible SO-PMD. PMF sections (birefringent sections) were concatenated together to ensure FO- and SO-PMD coexist, emulating deployed fibres. FO- and SO-PMD can be controlled by altering mode coupling (coupling angles) and birefringence distribution. Emulators with PMD statistics approaching the theoretical distributions had high random coupling and several numbers of randomly distributed PMF sections. In addition, the lengths of their PMF sections lie within 20% standard deviation of the mean emulator length. Those emulators with PMD statistics that did not approach the theoretical distributions had limited numbers of randomly distributed PMF sections and mode coupling. Results also show that even when an emulator has high random mode coupling and several numbers of randomly distributed PMFs, its PMD statistics deviates away from expected theoretical distributions in the presence of polarization dependent loss (PDL). The emulators showed that the background autocorrelation function (BACF) approaches zero with increasing number of randomly mode coupled fibre sections. A zero BACF signifies that an emulator has large numbers of randomly distributed PMF sections and its presence means the opposite. The availability of SO-PMD in the emulators made the autocorrelation function (ACF) x asymmetric. In the absence of SO-PMD the ACF for a PMD emulator is symmetric. SO-PMD has no effect on the BACF. Polarization-optical time domain reflectometry (P-OTDR) measurements have shown that certain fibre sections along fibre link lengths have higher FO-PMD (HiFO-PMD) than other sections. This study investigates the impact of a HiFO-PMD section on the overall FO- and SO-PMD, the output state of polarization (SOP) and system performance on deployed fibres (through emulation). Results show that when the wavelength-independent FO-PMD vector of the HiFO-PMD section is greater than the FO-PMD contributions from the rest of the fibre link, the mean FO-PMD of the entire link is biased towards that of the HiFO-PMD section and the SO-PMD increases (β ≠ 0o or 180o) or remains fixed (β = 0o or 180o) depending on the coupling angle β between the HiFO-PMD section and the rest of the fibre link. In addition, the FO-PMD statistics deviates away from the theoretical Maxwellian distribution. However, experimental results show that the HiFO-PMD section has negligible influence on the SOPMD statistical distribution. An increase in the amount of FO-PMD on a HiFO-PMD section reduces the output SOP spread to a given minimum, in this study the minimum was reached when the HiFO-PMD ≥ 35 ps. However, the outcome of the output SOP spread depends on the location of the HiFO-PMD section along the fibre link length. It was found that when the HiFO-PMD section introduces SO-PMD, the bit error rate (BER) is much higher compared to when it does not introduce SO-PMD.
269

Compensation for polarization mode dispersion and nonlinear birefringence in a multichannel optical fibre system

Waswa, David Wafula January 2009 (has links)
Polarization mode dispersion (PMD) is stochastic in nature and continues evolving in an unpredictable manner according to the changing environment. Nonlinear birefringence in multichannel systems alters the polarization states of the bits, so that they vary from one bit to the next in a way that is difficult to predict. These are the two major signal-impairment effects that are inherent in optical fibre transmission links which can seriously degrade network performance. It is therefore extremely challenging to compensate for both linear and nonlinear birefringence in multichannel systems. The purpose of this thesis is to investigate the interaction between PMD and nonlinear induced birefringence in a fibre with consideration of mode coupling. A sound knowledge of this interaction is necessary in designing a linear and nonlinear polarization mode dispersion compensator for WDM systems, as was successfully carried out in this study. The investigation shows that the effect of nonlinear birefringence alone depolarizes the signal, while in high PMD links where polarization mode coupling is high, the nonlinear birefringence effect couples with second-order PMD such that it may reduce the penalty and improve the signal DOP. Further investigation shows that when nonlinear birefringence becomes significant, asymmetry arises between the two principal axes of the fibre, such that it is only one axis which experiences the effect of nonlinear birefringence. It is found out that along this vii axis, there exists a critical point in pump power where the nonlinear birefringence cancels PMD in the link and improves the signal. An adaptive compensator to cancel PMD and nonlinear birefringence was designed based on feedforward DOP-monitoring signal. The compensator was tested both at laboratory level and on the Telkom buried fibre link and found to be functioning as intended. It was able to adaptively track and compensate PMD in the link in less than a second. The compensator was able to cancel PMD in the link up to a maximum of 30 ps. The compensator improved the DOP of the worst signal by more than 100 percent.
270

Photonic Integrated Circuits Challenges & Solutions: Homogenization, Polarization Management and Coupling

Samadian, Parya January 2015 (has links)
In recent years much effort has been carried out to make integrated photonics a widespread technology to be exploited in current optical communication industry. It is hoped by substituting microelectronics by photonic chips and keeping the light carried by optical fibers in light domain for further processing, the cost and speed of communications will be vastly improved. Although this transition is challenging in various aspects, here in this thesis some of these issues are discussed and addressed. In this thesis firstly the limitations of current simulation tools for analysis of wide range of photonic devices is pointed out. Structures based on photonic crystals are taken into consideration at this point which because of finely detailed structures have shown to be challenging to be analyzed by conventional tools. In this regard three different common structures based on photonic crystals in both resonant and non-resonant regimes have been considered: lamellar gratings, metamaterials for Lüneburg lens and Bragg gratings in a LC-DFB laser. For each structure, an analytical method or homogenization approach is proposed which is claimed to be faster for analysis of such components than numerical methods. Comparisons of the results with conventional numerical methods prove accuracies of each approach. Furthermore, fiber-to-chip coupling and polarization management are discussed as other important issues in the field of integrated photonics. Concerning polarization management, stepped waveguide approach will be introduced as the most promising approach for SOI and III-V substrates and designs based on this structure reported in literature are reproduced and inaccuracies are pointed out and corrected accordingly. Also regarding fiber-to-chip coupling, a critical appraisal of the most recent proposed structures for edge coupling will be offered and the results will be reproduced by simulation tools. At the end, based on detailed comparisons, the most encouraging approach with low insertion loss and easy fabrication steps is introduced and novel platform for easy butt coupling single mode fibers to the coupler structure is proposed.

Page generated in 0.3212 seconds