281 |
DETECTION OF POLARIMETRIC SIGNATURES USING HIGH-EFFICIENCY POLARIMETRIC IMAGING TECHNIQUESSumrain, Shadi 23 September 2005 (has links)
No description available.
|
282 |
A Study On the effect of Non-thermal Plasma on Macrophage Phenotype ModulationSharfuddin, Takia January 2021 (has links)
No description available.
|
283 |
Probing Random Media With Singular WavesSchwartz, Chaim 01 January 2006 (has links)
In recent years a resurgence of interest in wave singularities (of which optical vortices are a prominent example), light angular momentum and the relations between them has occurred. Many applications in various areas of linear and non-linear optics have been based on studying effects related to angular momentum and optical vortices. This dissertation examines the use of such wave singularities for studying the light propagation in highly inhomogeneous media and the relationship to angular momentum transfer. Angular momentum carried by light can be, in many cases, divided in two terms. The first one relates to the polarization of light and can be associated, in the quantum description, to the spin of a photon. The second is determined by the electromagnetic field distribution and, in analogy to atomic physics, is associated with the orbital angular momentum (OAM) of a photon. Under the paraxial approximation appropriate for the case of beam propagation, the two terms do not couple. However, each of them can be modified by the interaction with different media in which the light propagates through processes which involve angular momentum exchange. The decoupling of spin and orbital parts of light angular momentum can not, in general, be assumed for non paraxial propagation in turbid media, especially when backscattering is concerned. In Chapter 3 of this dissertation, scattering effects on angular momentum of light are discussed both for the single and multiple scattering processes. It is demonstrated for the first time that scattering from a spherically symmetric scattering potential, couples the spin and the OAM such that the total angular momentum flux density in conserved in every direction. Remarkably, the conservation of angular momentum occurs also for some classes of multiple scattering trajectories and this phenomenon manifests itself in ubiquitous polarization patterns observed in back-scattering from turbid media. It is newly shown in this dissertation that the polarization patterns a result of OAM carrying optical vortices which have a geometrical origin. These geometrical phase vortices are analyzed using the helicity space approach for optical geometrical phase (Berry phase). This approach, introduced in the con- text of random media, elucidates several aspects specific to propagation in helicity preserving and non-preserving scattering trajectories. Another aspect of singular waves interaction with turbid media relates to singularities embedded in the incident waves. Chapter 4 of the dissertation discusses how the phase distribution associated with an optical vortex leads to changes in the spatial correlations of the electromagnetic field. This change can be used to control the properties of the effect of enhanced backscattering in a way which allows inferring the optical properties of the medium. A detailed theoretical and experimental study of this effect is presented here for the first time for both double-pass geometries and diffusive media. It is also demonstrated that this novel experimental technique can be used to determine the optical properties of turbid media and, moreover, it permits to sense the depth of reflective inclusions in opaque media. When considering a regime of weakly inhomogeneous media, the paraxial approximation is still valid and therefore the spin and OAM do not couple. If, In addition, the medium is optically isotropic then the polarization is not affected. However, when the medium is non-axially symmetric for any specific realization, the OAM does change as a result of interaction with the medium. This effect can be studied using a newly developed method of coherent modes coupling which is presented in Chapter 5. This approach allows studying the power spread across propagating modes which carry different orbital angular momentum. The powerful concept of coherent modes coupling can be applied to fully coherent, fully polarized sources as well to partially coherent, partially polarized ones. An example of this scattering regime is atmospheric turbulence and the propagation through turbulence is thoroughly examined in Chapter 5. The results included in this dissertation are of fundamental relevance for a variety of applications which involves probing different types of random media. Such applications include remote sensing in atmospheric and maritime environments, optical techniques for biomedical diagnostics, optical characterization procedures in material sciences and others.
|
284 |
Inverse Problems In Multiple Light ScatteringBroky, John 01 January 2013 (has links)
The interaction between coherent waves and material systems with complex optical properties is a complicated, deterministic process. Light that scatters from such media gives rise to random fields with intricate properties. It is common perception that the randomness of these complex fields is undesired and therefore is to be removed, usually through a process of ensemble averaging. However, random fields emerging from light matter interaction contain information about the properties of the medium and a thorough analysis of the scattered light allows solving specific inverse problems. Traditional attempts to solve these kinds of inverse problems tend to rely on statistical average quantities and ignore the deterministic interaction between the optical field and the scattering structure. Thus, because ensemble averaging inherently destroys specific characteristics of random processes, one can only recover limited information about the medium. This dissertation discusses practical means that go beyond ensemble averaging to probe complex media and extract additional information about a random scattering system. The dissertation discusses cases in which media with similar average properties can be differentiated by detailed examination of fluctuations between different realizations of the random process of multiple scattering. As a different approach to this type of inverse problems, the dissertation also includes a description of how higher-order field and polarization correlations can be used to extract features of random media and complex systems from one single realization of the light- iv matter interaction. Examples include (i) determining the level of multiple scattering, (ii) identifying non-stationarities in random fields, and (iii) extracting underlying correlation lengths of random electromagnetic fields that result from basic interferences. The new approaches introduced and the demonstrations described in this dissertation represent practical means to extract important material properties or to discriminate between media with similar characteristics even in situations when experimental constraints limit the number of realizations of the complex light-matter interaction
|
285 |
Polarization Dependent Two-photon Absorption Properties Of Chiral MoleculesToro, Carlos 01 January 2010 (has links)
Molecules that are non-superimposable on their mirror image are named chiral or optically active compound. Over the years, molecular chirality has played an essential role in the understanding of fundamental aspects associated the origin of life, drug and food technologies and, asymmetric catalysis, among others. Moreover, most of the groundbreaking discoveries and advances made in this field have happened due to the development of spectroscopic techniques based on the natural asymmetry of the enantiomers and their ability to preferentially absorb right or left polarized light. For instance, circular dichroism (CD), which measures the difference in absorption between these two states of polarized light, has emerged as one of the most useful spectroscopic methods to identify and characterize chiral compounds. Unfortunately, CD is based on linear absorption which, in most common organic molecules, takes place in the UV region of the spectrum where the majority of organic solvents absorb as well. This certainly imposes limitations in the indiscriminated applicability of this technique to the study of chiral chromophores of biological interest in non-aqueous solutions. Consequently, a systematic and comprehensive characterization of the electronic and optical properties of such molecular entities still remains a major issue to be addressed. On this regard, nonlinear optics offers new alternatives to overcome some of the shortcomings of the standard linear CD-based spectroscopy. In order to surmount the existent limitations in this field and deepen in the fundamental understanding of chiral systems, we have mainly directed the attention of our research to the experimental and theoretical study of the polarization dependent two-photon absorption (2PA) of several chiral azo-compounds and binaphthol derivatives in solution. The first part of this dissertation (Chapters I-IV) covers a full characterization of the linear and nonlinear optical properties of a series of non-chiral and chiral azo derivatives. The combination of experimental techniques such as absorption, fluorescence, excitation anisotropy, circular dichroism, two-photon absorption and two-photon absorption circular-linear dichroism in combination with density functional theory calculations allowed us to unambiguously distinguish and assign the spectral position of the main electronic transitions (n-[pi]* and [pi]-[pi]*) in azobenzene derivatives. Our results represent a major contribution to the understanding of the electronic structure of these organic chromophores which have been reported of potential interest in the design of optoelectronic devices. Then, Chapter V describes the development of a novel experimental technique called the synchronized double L-scan for the study of polarization dependent multiphoton absorption in chiral samples. The high sensitivity of this technique resides in the use of "twin" pulses to account for energy and mode fluctuations of the excitation pulse when determining absorption nonlinearities as a function of the light polarization. The robustness of this method was validated by measuring the first ever reported two-photon absorption circular dichroism (2PA-CD) spectrum on a chiral binaphthol derivative in solution. Finally, Chapters VI and VII compile an ample experimental and theoretical investigation of the chirality-dependent 2PA of axial enantiomers in solution. We combined the use of the synchronized double L-scan technique with state-of-the-art density functional theory calculations to provide a precise and reliable description of the contribution of the different electronic excited states to the 2PA-CD and 2PA-CLD spectra. Our findings are foreseen to have a tremendous impact in the comprehension of some of the most fundamental aspects of chiral phenomena.
|
286 |
Nuclear Moments of 140La, 147Nd, and 149NdPierce, Anton Robert 05 1900 (has links)
<p> Using atomic beam magnetic resonance techniques the hyperfine structure (hfs) constants for the magnetic dipole and electric quadrupole interaction, AJ and BJ, have been measured for the following isotopes: 40-hour 140La, 1.8-hour 149Nd and 11-day 147Nd.</p> <p> For 140La the hfs constants are (relative to the J = 5/2 state of 2D) |A5/2| = 55.9(4) MHz, |B5/2| = 38(4) MHz, B5/2/A5/2 > 0. Application of the Fermi-Segre relations in
comparison with 139La yields the nuclear moments; μI = (+)0.73(3) n.m., and Q =(+)0.11(4) b. The adopted signs are based on Blok's measured sign of Q for 140La.</p> <p> For 149Nd the hfs constants are: |A4| = 91.0(19) MHz, |B4| = 266(53) MHz, and B4/A4 > 0. Comparison with 145Nd yields μI = (-)0.350(10) nm., and Q = +1.3(3)b. The signs of these moments are based on Q>0 as indicated by nuclear systematics in this region.</p> <p> For 147Nd the hfs constants are |A4| = 143(4) MHz, |B4| = 181(64) MHz, and B4/A4 > 0. Comparison with 145Nd yields |μI| = 0.553(15) n.m., |Q| = 0.9(3) b and μI/Q <0.</p> <p> The error in the 140La magnetic moment allows for a possible 2% hfs anomaly. The quadrupole moments allow for a possible 25% error in the core polarization correction
(Sternheimer).</p> <p> These results are discussed in terms of the shell model, the quasi-particle model, and the Nilsson model.</p> / Thesis / Doctor of Philosophy (PhD)
|
287 |
A New Polarization-Reconfigurable Antenna for 5G Wireless CommunicationsAl-Yasir, Yasir I.A., Ojaroudi Parchin, Naser, Elfergani, Issa T., Abd-Alhameed, Raed, Noras, James M., Rodriguez, Jonathan, Al-jzari, A., Hammed, W.I. 22 August 2018 (has links)
Yes / This paper presents a circular polarization reconfigurable antenna for 5G applications, which is compact in size and has good axial ratio and frequency response. The proposed microstrip antenna is designed on a FR-4 substrate with a relative dielectric constant of 4.3 and has a maximum size of 30×30 mm2 with 50 Ω coaxial probe feeding. This design has two PIN diode switches controlling reconfiguration between right hand circular polarization (RHCP) and left hand circular polarization (LHCP). To achieve reconfigurability, a C-slot rectangular patch antenna with truncated corner techniques is employed by cutting off two corners on the radiating patch. The proposed antenna has been simulated using CST microwave studio software: it has 3.35-3.77 GHz and 3.4-3.72 GHz bands for both states of reconfiguration, and each is suitable for 5G applications with a good axial ratio of less than 1.8 dB and good gain of 4.8 dB for both modes of operation. / Innovation programme under grant agreement H2020-MSCA-ITN-2016 SECRET-722424, UK Engineering and Physical Sciences Research Council (EPSRC) under grant EP/E022936/1.
|
288 |
Deep Inelastic Polarized Electron-Proton Scattering in QCDMarleau, Guy 01 1900 (has links)
No description available.
|
289 |
Elasticity and polarizations in ferroelectric liquid crystalsLu, Minhua January 1993 (has links)
No description available.
|
290 |
Collisional depolarization of the atomic Cs 6s<sup>2</sup>S<sub>1/2</sub>-10s<sup>2</sup>S<sub>3/2</sub>,9d<sup>2</sup>D<sub>5/2</sub> transition with argon buffer gasSeda, Kin 29 June 2005 (has links)
No description available.
|
Page generated in 0.0262 seconds