21 |
Characterisation of Poly (ethylene naphthalate)-based polymer blendsJung, Dylan D. B. January 2003 (has links)
This investigation presents research on the characteristic properties of Nylon66 and poly(ethylene naphthalate) (Ny66/PEN), and poly(butylene terephthalate) and poly(ethylene naphthalate) (PBT/PEN) blends with several weight compositions made by melt blending, by the use of 13C and 1H Nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), Scanning electron microscopy (SEM), Differential scanning calorimetry (DSC) and Dynamic mechanical thermal analysis (DMTA), X-ray diffraction (X-RD), tensile, impact and stress relaxation tests. Ny66/PEN blends including several additives do not improve the miscibility of the constituent polymers and show lower tensile strength than those of homopolymers. However, PBT/PEN blends reveal improved tensile strengths of the blends between the ROM and MROM predictions lines with more than 50 % volume fraction of PEN. On the other hand, NMR spectra show no evidence of interchange reaction in both Ny66/PEN and PBT/PEN blends. SEM micrographs of fracture surfaces in PBT/PEN blends reveal a very small (sub-micron) domain size in contrast to large domains in Ny66/PEN blends, which indicates partial miscibility of PBT and PEN. DSC and DMTA demonstrate partial miscibility of PBT/PEN blends by the change of Tgs of each component according to the weight proportions of the constituent polymers. Stress relaxation tests for the specimens of PBT/PEN blends and the homopolymers, using the Taguchi method of experimental design, determine that the most significant factor is the temperature, followed by PEN content and then the initial stress, and interaction effects between factors are insignificant. To fit the relaxation curves of the PBT/PEN blends and the homopolymers at different temperatures, PEN contents and initial stresses, four different equations have been used. The coefficients of the equation that fit best are used to predict the relaxation behaviour of PBT/PEN blends at a temperature between 30C and 60C, and at the initial stresses of 7 MPa.
|
22 |
Desenvolvimento de blendas de biopolietilenos verdes PEAD/PELBD.OLIVEIRA, Akidauana Dandara Brito de. 09 July 2018 (has links)
Submitted by Maria Medeiros (maria.dilva1@ufcg.edu.br) on 2018-07-09T17:24:53Z
No. of bitstreams: 1
AKIDAUANA DANDARA BRITO DE OLIVEIRA - DISSERTAÇÃO (PPGCEMat) 2015.pdf: 4346677 bytes, checksum: 2518460fd25d05c04a1b089149325a5d (MD5) / Made available in DSpace on 2018-07-09T17:24:53Z (GMT). No. of bitstreams: 1
AKIDAUANA DANDARA BRITO DE OLIVEIRA - DISSERTAÇÃO (PPGCEMat) 2015.pdf: 4346677 bytes, checksum: 2518460fd25d05c04a1b089149325a5d (MD5)
Previous issue date: 2015-02-26 / CNPq / Os biopolímeros são polímeros ou copolímeros produzidos a partir de matériasprimas de fontes renováveis, como: milho, cana-de-açúcar, celulose, quitina, e outras. Já os biopolímeros verdes também são sintetizados a partir de matériaprima de fontes renováveis, porém, não são biodegradáveis e mantêm as mesmas características dos polímeros obtidos de fontes fósseis. Um exemplo de polímero verde é o polietileno verde (PE verde). Este trabalho teve como objetivo principal desenvolver blendas poliméricas a partir de dois biopolietilenos verdes (BioPEAD/BioPELBD) e avaliar o efeito da composição nas diversas propriedades e morfologia. As blendas foram preparadas em extrusora dupla rosca corrotacional, seguida da moldagem por injeção e caracterizadas a partir de medidas reológicas sob taxa de cisalhamento em regime permanente e oscilatório , análise das propriedades mecânicas, Difração de raios X (DRX), Microscopia Eletrônica de Varredura (MEV), análise térmica por calorimetria exploratória diferencial (DSC) e termogravimétrica (TG). Dos resultados obtidos quanto ao comportamento reológico, verificou-se que a viscosidade aparente obedeceu à regra da aditividade e, a viscosidade e o grau de pseudoplasticidade, variaram proporcionalmente com a concentração. O resultado do comportamento reológico em regime viscoelástico linear mostrou que as blendas apresentaram um aumento no valor da viscosidade complexa a baixas freqüências (região de platô) e com valores intermediários para as blendas, quando comparados ao BioPEAD e BioPELBD. The comportamento semelhante ao obtido em regime permanente, sugerindo a Regra de Cox-Merz. Os ensaios reológicos também sugeriram que o BioPEAD e BioPELBD foram parcialmente miscíveis no estado fundido. Os resultados das propriedades mecânicas mostraram que aumento do teor de BioPELBD diminuiu a resistência à tração e o módulo de elasticidade. Por outro lado, o alongamento até a ruptura, e, por conseguinte a tenacidade, e a resistência ao impacto aumentaram substancialmente. Os resultados obtidos por DRX mostraram que a cristalinida do BioPEAD diminuiu com o aumento do teor de BioPELBD nas blendas BioPEAD/BIOPELBD. A partir das fotomicrografias obtidas por MEV, observou-se que o aumento do teor de BioPELBD nas blendas, reduz significativamente a quantidade de partículas da fase dispersa sendo até imperceptível visualizá-las quando a concentração de 50% em peso de BioPELBD foi alcançada, sugerindo co-continuidade de fases. Os resultados de DSC mostraram uma redução no valor do pico da temperatura de fusão à medida que se aumentou o teor de BioPELBD, indicando uma diminuição do tamanho dos cristalitos e, por conseguinte, uma redução na cristalinidade das blendas. A partir dos resultados de TG, observouse que as blendas exibiram estabilidade térmica mais elevadas do que para o BioPEAD e BioPELBD. / Biopolymers are polymers or copolymers made from raw materials of renewable sources, such as corn, sugarcane, sugar, cellulose, chitin and others. Green biopolymers are also synthesized from renewable raw materials, however, are not biodegradable and maintain the same characteristics of the polymers obtained from fossil sources. An example of green polymer is biopolyethylene (BioPE). The aim of this work is to develop polymer blends from two types of biopolyethylene (Bio High Density Polyethylene - BioPEAD / Bio Linear Low Density Polyethylene - BioPELBD) and to evaluate the effect of the composition on various properties and morphology. The BioPEAD/BioPELBD blends were prepared by extrusion, in a co-rotational twin-screw extruder, followed by injection molding and characterized by rheological measurements under steady and oscillatory shear flows, mechanical properties, X-Ray diffraction (XRD), Scanning Electron Microscopy (SEM), Thermogravimetry (TG) and Differential Scanning Calorimetry (DSC). From the rheological measurements under steady shear flow, it was found that the apparent viscosity followed the rule of additivity, and the viscosity and degree of pseudoplasticity varied proportionally with concentration. Rheological measurements under oscillatory shear flow showed that the complex viscosity values of the blends increased at low frequencies (plateau region) and intermediate values were obtained for the blends, when compared to neat BioPEAD and BioPELBD. The values of the viscosity obtained in the oscillatory shear flow were similar to those obtained under steady shear flow, suggesting that the Cox-Merz rule was obeyed. The rheological measurements also suggested that BioPEAD and BioPELBD were partially miscible. The mechanical properties results showed that the increase in BioPELBD content decreased the tensile strength and elastic modulus. On the other hand, the elongation to break, and thus the toughness, and the impact strength have substantially increased. The XRD results showed that the crystallinity of BioPEAD decreased with the increase in the PELBD content in the BIOPEAD/BioPELBD blends. From SEM micrographs, it was observed that with the increase in the BioPELBD content the amount of dispersed phase particles was substantially decreased, being imperceptible when the concentration of 50% of BioPELBD was reached, suggesting phase cocontinuity. DSC results showed a reduction of the melting temperature peak value as BioPELBD content was increased, indicating a decrease in the crystallite size and therefore a reduction in the crystallinity of the blends. From the TG results, it was observed that the blends exhibited higher thermal stability than that of both BioPEAD and BioPELBD.
|
23 |
PROCESSING-STRUCTURE-PROPERTY RELATIONSHIPS INCO-CONTINUOUS POLYMER BLENDS AND COMPOSITESGuo, Molin 07 September 2020 (has links)
No description available.
|
24 |
PHYSICAL FOAMING BEHAVIOR AT THE INTERFACE OF POLYMER BLENDS-Foaming Mechanism and its Application- / ポリマーブレンドの界面における物理発泡 -発泡機構とその応用-Gong, Pengjian 24 September 2013 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第17894号 / 工博第3803号 / 新制||工||1582(附属図書館) / 30714 / 京都大学大学院工学研究科化学工学専攻 / (主査)教授 大嶋 正裕, 教授 山本 量一, 教授 宮原 稔 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
|
25 |
Structure and Dynamics in Novel Polyolefin and Their Blends for SustainabilityKafle, Navin K. 02 August 2023 (has links)
No description available.
|
26 |
Rheology of Miscible Polymer Blends with Hydrogen BondingYang, Zhiyi 02 October 2007 (has links)
No description available.
|
27 |
Evaluation of the Effects of Nanofil® Nanoclays in the Blending of Polypropylene and PolystyreneOpalko, Robert J. 12 May 2008 (has links)
No description available.
|
28 |
PH SENSITIVE RNA AND DRUG DELIVERY SYSTEMSSutton, Damon Michael 08 June 2007 (has links)
No description available.
|
29 |
POLYMER BLENDS, COMPOSITES AND AEROGEL MODIFICATION BY INNOVATIVE APPROACHESJohnson, Jack Royce, III January 2011 (has links)
No description available.
|
30 |
Enhanced dielectric properties of immiscible poly (vinylidene fluoride)/low density polyethylene blends by inducing multilayered and orientated structuresLin, X., Fan, L., Ren, D., Jiao, Z., Yang, W., Coates, Philip D. 03 February 2017 (has links)
Yes / In order to improve the frequency-dependent dielectric properties of the immiscible polymeric blends
which were melt-compounded by composing poly (vinylidene fluoride) (PVDF) and low density
polyethylene (LDPE), the layer multiplication and the solid phase orientation technologies were
respectively adopted as two effective strategies to optimize the dispersion state and the orientation of
internal microstructure, aiming at reducing physical porosity and improving the barrier performance
as well as crystal phase of the polymer extrudates. Results comparison showed the dielectric
properties were greatly dependent on the crystal type and the physical porosity density which were
also emphasized as the interfacial effect in the previous work [ref. 29: Lin X et al, J Appl Polym Sci
2015; 132(36), 42507]. It was found that the multilayer-structure manipulation could substantially
improve the dispersion state between the two immiscible components, enhance the mechanical
performance and reduce the internal defects and increase the dielectric constant while keeping the
dielectric loss stable. By uniaxial stretching the sample sheets at a rubber state temperature of ca.
10-20˚C below the melting point, crystal transformation was induced by increasing molecular chains
orientation degree which was also contributed to the enhancement of the dielectric properties. These
techniques implied the potential as a promising way for inducing functional structures of polymeric
blends.
|
Page generated in 0.0481 seconds