• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 216
  • 157
  • 44
  • 26
  • 13
  • 12
  • 11
  • 9
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 570
  • 116
  • 88
  • 79
  • 63
  • 63
  • 61
  • 56
  • 54
  • 50
  • 49
  • 47
  • 40
  • 39
  • 37
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Biodegradation of polyurethane under composting conditions

Zafar, Urooj January 2013 (has links)
Plastic are a highly durable, lightweight and low cost family of polymeric materials that form an essential and integral component of today’s world. Their continued world-wide large scale manufacture has led them to be a major component of man-made waste. A large proportion of plastic waste is directed to the landfill sites, however their low degradation rates, scarcity of landfill sites and growing water and land pollution problems require alternatives to be developed. Composting is a natural process involving aerobic decomposition of organic wastes by a mixed microbial consortium that involves thermophilic microbes during the process due to the heat generated during decomposition. In this study we investigated the biodegradation of polyurethane under composting conditions. Polyurethanes are heteropolymers with a wide range of applications in the medical, automotive, construction and domestic field and in Europe account for 7% of all plastic manufacture and have been shown to be susceptible to biodegradation, particularly by fungi. In this thesis, it was found that loss in tensile strength of >70% occurs at both mesophilic (25°C) and thermophilic (45° and 50°C) temperatures under laboratory conditions and so is susceptible to degradation at all stages of the composting process. Moreover, polyester PU buried in compost piles at a commercial composting site during the maturation phase of an in silo composting process also underwent substantial degradation. Non-culture based analysis by TRFLP, DGGE and 454 pyrosequencing revealed that the fungal communities colonising the surface of PU was substantially different from the surrounding compost indicating selection of fungi on the PU surface. Pyrosequencing revealed that under laboratory conditions, at 25°C Fusarium solani, and 45°C and 50°C, Candida ethanolica was the dominant organism recovered from the PU surface, whereas at the commercial composting site an unidentified fungal clone and Arthrographis kalrae were the dominant organisms recovered. When the microparticulate polyester PU dispersion impranil was added to compost, a substantial shift in the indigenous fungal population was observed along with an increase in fungal viable numbers, however, addition of larger solid PU had no lasting effect on the surrounding compost community. This study demonstrates that polyester PU is highly susceptible to degradation in during composting and indicates a future potential for directing PU wastes to existing commercial composting processes.
52

Bioresorbovatelné polyuretany s říditelnými mechanickými vlastnostmi / Bioresorbable polyurethanes with controlled mechanical properties

Letavaj, Emil January 2017 (has links)
Presented diploma thesis deals with preparation of bioresorbable polyurethanes (PUR) and their characterization. The theoretical part describes the feedstocks used for the PUR preparation and summarizes the knowledge about PUR used in medical applications. Experimental part presents characterization of bioresorbable PUR films prepared by reactive casting in one step without the use of organic solvents. The absence of solvents represents a great advantage due to their toxicity and subsequent removal from the resulting product. The synthesis of PUR was conducted under an inert atmosphere by polyaddition reaction of hydrophobic poly(e-caprolactone) (PCL) and hydrophilic poly(ethylene glycol) (PEG) with hexamethylene diisocyanate (HDI). Synthesis under an inert atmosphere was necessary due to a side reaction of isocyanate with atmospheric humidity, which causes the formation of porous films instead of continuous ones. Prepared PUR films were characterized for different PCL/PEG ratios and different isocyanate index (ratio of NCO/OH reacted groups). PUR (isocyanate index 1.05) with PCL content 90 wt. % and higher demonstrated tought behavior in mechanical tests. Increase of isocyanate index and decrease of PCL content under 90 wt. % caused fragile sample behavior. The reason of such behavior was the different ability of PCL to crystallize in the structure of the polyurethane network. Increasing the PEG content has improved the ability of PUR films to absorb water and enhanced the rate of hydrolytic degradation. By adjusting the PCL/PEG ratio and the amount of isocyanate, solvent free bioresorbable PUR with suitable mechanical (flexibility, toughness) and physical properties (swelling, degradation) can be obtained. Prepared PUR films could be used in biomedicine e.g. as vascular grafts.
53

Structure-Property Relationships of Flexible Polyurethane Foams

Kaushiva, Bryan D. 28 September 1999 (has links)
This study examined several structure-property features of flexible polyurethane foams that are important aspects of foam production. AFM and WAXS were used to demonstrate the existence, for the first time in typical polyurethane foam systems, of lamellae-like polyurea structures ca. 0.2 mm long and ca 5-10 nm across. Aggregations of these lamellae-like hard domains may be the polyurea balls typically observed via TEM. Diethanolamine, a widely used cross-linking agent in molded foams, was shown to disrupt ordering in the polyurea hard domains and alter the interconnectivity of hard domains by preventing the formation of lamellae-like structures. These changes were shown to lead to softening of the foam. Copolymer polyol is frequently applied as reinforcing filler in foams. It was found that a common method of adding this component alters the hard segment/soft segment (HS/SS) ratio, thus increasing the load bearing capacity of the foam. It was observed in this report that at constant HS/SS ratio, the copolymer polyol only increased load bearing under humid conditions. It was also shown that the collapse of the cellular structure of a foam prior to the point of urea precipitation alters the aggregation behavior of the hard domains and alters solid-state properties. Surfactant is thus suggested to play a secondary role in the development of the hard domains by maintaining the cellular structure in the foam as the phase separation occurs and at least until the polyurethane foam has more fully organized hard segment domains. It was found that cure temperature could be manipulated to predictably change interdomain spacings and hydrogen bond development in the polymer. Curing above 100°C was found to lower hard segment content for plaques of the same formulation possibly as a result of water and isocyanate vaporization. Apart from polyurethane materials, structure-property relationships were examined in cast blends based on poly(tetrafluoroethylene) (PTFE) and the terpolymer poly(tetrafluoroethylene-co-vinylidene fluoride-co-hexafluoropropylene) (FKM). This revealed that tensile and dynamic moduli could be predictably altered by controlling the degree of FKM cross-linking or by varying PTFE content in the film. Inducing PTFE fibrillation was found to yield higher modulus films without increasing PTFE content. / Ph. D.
54

Behavioral Study of Polyurethane Disc Bearings in Bridges

Humagain, Sunil January 2020 (has links)
No description available.
55

Kultivierung von humanem Speicheldrüsengewebe in einer dreidimensionalen Polyurethanmatrix / Cultivation of human salivary gland tissue in a three-dimensional Polyurethane Matrix

Ströhle, Serge - Peer January 2020 (has links) (PDF)
Bei Tumoren von Kopf und Hals kann primär oder adjuvant durch Bestrahlung therapiert werden. Die Folgen dieser Behandlung können Xerostomie, Karies, Infektionen, Dysphagie oder Mundgeruch sein. Diese Nebenwirkungen vermindern die Lebensqualität des Patienten. Unterschiedliche Behandlungsansätze haben aufgrund von therapiebedingten Einschränkungen nicht den Weg in den klinischen Alltag gefunden. Eine Alternative zu den vorhandenen Behandlungsansätzen kann das Tissue Engineering sein. Das Ziel einer Normalisierung der Speichelproduktion nach Behandlung soll durch eine implantierbare, künstliche Speicheldrüse erreicht werden. Kann humanes natives Speicheldrüsengewebe der Parotis auf gradientenfreiem dreidimensional aufgebauten Polyurethan wachsen und seine Funktionalität beibehalten? Humane Parotiszellen wurden von 20 Patienten im Alter von 42 - 90 Jahren durch Operation entnommenen und in Polystyrol-Zellkulturflaschen mit dem Nährmedium BEGM herangezüchtet. Es erfolgte eine 2D-Zellverteilung der reinen Parotiskultur. Zur Kontrolle der Vitalität zwischen den Passagen wurde eine Trypan-Blau Färbung verwendet. Als Trägermaterial der Zellen wurde eine biokompatible, abbaubare Matrix aus ε-Polycaprolacton verarbeitet. Die Übertragung der humanen Parotiszellen wurde mit einer Kleberproteinlösung, bestehend aus den Hauptbestandteilen Aprotinin, Fibrinogen und der Thrombinlösung durchgeführt. 7,14 und 21 Tage nach Aufbringung wurde der Überstand der zeitgleich entnommenen Konstrukte zur Überprüfung des α-Amylase konserviert. Zusätzlich wurden an den 3 Untersuchungstagen Konstrukte für die Anfertigung von histologischen Schnitten, quantitativer PCR, indirekter Immunfluoreszenz und zur Elektronenmikroskopie entnommen. Zur Überprüfung der Funktionalität der angezüchteten Speicheldrüsenzellen wurde das Enzym α-Amylase und das Wasserkanalprotein Aquaporin 5 herangezogen. Bei der Kultivierung der humanen Speicheldrüsenzellen konnte durch den Vitalitätstest Trypan-Blau Färbung in Kombination mit einer Neubauerzählkammer eine konstant hohe Anzahl an vitalen Zellen bis zur 4. Passage nachgewiesen werden. Durch die Lebend/Tot Färbung auf FDA/EB Basis der Konstrukte über die Untersuchungszeit von 14 Tagen konnte keine Vermehrung von avitalen Zellen mikroskopisch festgestellt werden. Die statistische Auswertung mittels Boxplots des ELISA berechnete für den ersten Untersuchungstag einen Median auf niedrigem Niveau von 4,4 U/l und sank im weiteren Zeitverlauf am Untersuchungstag 21 auf die niedrigsten Median von 2,2 U/l ab. α-Amylase konnte an allen 3 Tagen mittels quantitativer PCR und indirekter Immunfluoreszenz belegt werden. Aquaporin 5 als Funktionsnachweis war in der vorliegenden Studie nicht signifikant durch quantitative PCR beweisbar. Die Rasterelektronenmikroskopie bildete adhärente Zellen in kugeliger Form aus den besiedelten Matrices nach 7 Tagen Kultivierung ab. Durch die Transmissionselektronenmikroskopie konnten Zellen, die Zellfortsätze ausgebildet hatten nach 14 Tagen beobachtet werden. Der Versuch, histologische Schnitte auf Grundlage der Paraffineinbettung oder Kryo-Konservierung zu erzeugen, musste frustran abgeschlossen werden. Eine Kultivierung von Speicheldrüsenzellen auf einer Matrix aus ε-Polycaprolacton ohne Gradienten ist eingeschränkt umsetzbar. Die Studie konnte zeigen, dass das Wachstum der Zellen auf konstant niedrigem Niveau über den Untersuchungszeitraum von 21 Tagen lag. Der Funktionsnachweis von α-Amylase auf absinkendem niedrigem Niveau sowie fehlender Bestätigung von Aquaporin 5 kann als stationäre Phase des Wachstums interpretiert werden. Zur Verbesserung der Zellentwicklung sollte die besiedelte Matrix zu einem 3D-Zellwachstum anregen. Bei sequenziell entstehender Polarität der Zellen käme es zu einer Verbesserung der Vitalität sowie der vermehrten Ausbildung von α-Amylase und Aquaporin 5. Dies könnte in einer Kombination der Zellkultur aus Parotiszellen mit Kokulturen aus humanen Myoepithelzellen und Parenchymzellen erreicht werden. Sehr gute Ergebnisse des Zellwachstums und der Zellfunktion konnten aktuell in anderen Studien auf der Trägersubstanz Matrigel oder durch Rebesiedelung von dezellularisierten Organen beobachtet werden. / In the case of tumours of the head and neck, the tumour can be treated primarily or adjuvantly by radiation. The consequences of this treatment can be xerostomia, caries, infections, dysphagia or bad breath. These side effects reduce the patient's quality of life. Different treatment approaches have not found their way into the clinical routine due to therapy related limitations. Tissue engineering can be an alternative to the existing treatment approaches. The goal of normalising saliva production after treatment is to be achieved by means of an implantable, artificial salivary gland. Can human native salivary gland tissue of the parotid gland grow on gradient-free three-dimensional polyurethane and retain its functionality? Human parotid gland cells were taken from 20 patients aged 42 - 90 years by surgery and cultivated in polystyrene cell culture bottles with the culture medium BEGM. A 2D cell distribution of the pure parotid culture was performed. A trypan-blue staining was used to control the vitality between the passages. A biocompatible, degradable matrix of ε-polycaprolactone was used as carrier material for the cells. The transfer of human parotid cells was performed with a glue protein solution consisting of the main components aprotinin, fibrinogen and the thrombin solution. 7, 14 and 21 days after application, the supernatant of the constructs taken at the same time was preserved for the examination of α amylase. In addition, constructs for the preparation of histological sections, quantitative PCR, indirect immunofluorescence and electron microscopy were taken during the 3 days of examination. The enzyme α-amylase and the water channel protein aquaporin 5 were added to test the functionality of the cultivated salivary gland cells. During the cultivation of human salivary gland cells, the vitality test Trypan blue staining in combination with a Neubauer counting chamber showed a constantly high number of vital cells up to the 4th passage. The live/dead staining on FDA/EB basis of the constructs over the examination period of 14 days did not show any proliferation of avital cells. The statistical evaluation by means of ELISA box plots calculated a median at a low level of 4.4 U/l for the first day of the examination and dropped to the lowest median of 2.2 U/l on examination day 21. α-amylase was detected on all 3 days by quantitative PCR and indirect immunofluorescence. Aquaporin 5 as a functional test was not significantly detectable by quantitative PCR in this study. The scanning electron microscopy imaged adherent cells in spherical form from the colonised matrices after 7 days of cultivation. Using transmission electron microscopy, cells that had formed cell extensions could be observed after 14 days. The attempt to produce histological sections based on paraffin embedding or cryopreservation had to be frustrated. Cultivation of salivary gland cells on a matrix of ε-polycaprolactone without gradients is of limited use. The study was able to show that the growth of the cells was at a constantly low level over the 21-day period of the study. The proof of function of α-amylase at a decreasing low level and the lack of confirmation of aquaporin 5 can be interpreted as a stationary phase of growth. To improve cell development, the colonised matrix should stimulate 3D cell growth. If the cells were to develop a sequential polarity, there would be an improvement in vitality as well as increased formation of α-amylase and aquaporin 5. This could be achieved by a combination of cell culture from parotid cells with cocultures of human myoepithelial cells and parenchymal cells. Very good results of cell growth and cell function could be observed in other studies on the carrier substance Matrigel or by re-colonisation of decellularised organs.
56

SYNTHESIS OF THERMOPLASTIC POLYURETHANES AND POLYURETHANE NANOCOMPOSITES UNDER CHAOTIC MIXING CONDITIONS

Jung, Changdo 23 September 2005 (has links)
No description available.
57

Analysis of Shape Memory Properties of Polyurethane Nanocomposites

Gunes, Ibrahim Sedat 03 September 2009 (has links)
No description available.
58

Synthesis and Characterization of Crosslinked Polyurethane-Clay Nanocomposites

Peng, Shirley 30 June 2015 (has links)
No description available.
59

Environmentally-Friendly Polyurethane-Silane Superprimer for Corrosion Protection of AA2024-T3

Bafna, Shakhar M. 04 April 2007 (has links)
No description available.
60

Characterization of Structure-Property Relationships of Poly(urethane-urea)s for Fiber Applications

O'Sickey, Matthew J. 22 May 2002 (has links)
Poly(urethane)s and poly(urethane-urea)s (PUU) are nearly ubiquitous, having been in existence since before the Second World War. Spandex, a poly(urethane-urea) elastomeric fiber, is found in nearly all articles of apparel as well as in an increasing array of other consumer items. The technology and chemistry of spandex is largely unchanged since its inception in the late 1950s, with the majority of spandex employing poly(tetramethylene ether glycol) as soft segments. Recent developments in catalyst technology have resulted in the production of ultra-low monol content poly(propylene glycol) (PPG), which is nearly difunctional (f=1.95+). This enhancement in difunctionality has potentially enabled the use of PPG as a spandex soft segment with potential spandex processing, performance, and economic benefits. PPG-based spandex elastomers were evaluated in both film and fiber form for the purpose of investigating morphological, orientational, mechanical, and thermal properties with the goal of understanding relationships between chemistry, morphology and properties. Key variables of interest were soft segment molecular weight (MW), molecular weight distribution (MWD), and composition, and hard segment content and composition. Of those, the influence of the molecular weight distribution of the polyol used for soft segments was of foremost interest and had previously been largely neglected during the course of poly(urethane) and poly(urethane-urea) research. It was found that over the range of PUU compositions suitable for production of spandex, that hard segment content and composition had little effect upon the morphology and thermal and mechanical properties. Appreciable trends as functions of soft segment molecular weight were observed. The soft segment MWD was adjusted through the addition of a low molecular weight homolog of PPG, tri(propylene glycol) (TPG), decreasing the number average soft segment MW. The results of these experiments were contrary to those for variation of soft segment molecular weight. It was determined that the low MW portion of the polyol MWD contributes to the building of hard segments in addition to or in lieu of soft segments. Incorporation of TPG in the PUUs resulted in larger, presumably less cohesive, hard domains and increased hard segment content. The TPG containing materials had enhanced tensile properties, less permanent set, and less residual orientation after deformation. These materials proved quite comparable to those using PTMEG soft segments. Comparison of film and fiber PUUs revealed only minor differences, implying that the trends and conclusions drawn from the study of films with spandex-like compositions would also hold for fibers. The key difference between films and fibers is that fibers maintain some residual ordering and orientation due to drawing of the fibers during processing. Of the processing variables investigated, none impacted the morphology as determined from small angle x-ray scattering. It was concluded, that of the various compositional variables germane to spandex, the polyol MW and MWD played key roles in development of morphology, and hence properties. The role of polyol MWD had been woefully neglected during the development of spandex previously, and was observed to be a critical variable. / Ph. D.

Page generated in 0.0277 seconds