151 |
Vertikální česle / Vertical rackKovář, Pavel January 2010 (has links)
Target of master thesis is constructional design of vertical rack with press of screenings for shaft type 501 up to 3200 mm deep. Part of this shaft system is atypical bottom with two inflows and one outflow of sewage water. According to these requirements there ware adapted dimensions and shapes of whole construction. Master thesis is divided into several parts, where is disposed construction design of rack with supplement, modification of shaft bottom and embedment of vertical rack.
|
152 |
Zvyšování mechanických vlastností odlitků ze slitin Al zhotovených metodou vytavitelného modelu / Increasing of mechanical properties of aluminium castings made by lost wax technologyNěmec, Jiří January 2012 (has links)
This diploma thesis is concerned with improving the mechanical properties of aluminium castings produced using investment casting technology by HIP (Hot Isostatic Pressing). Comparing the mechanical properties of separately casted test bars and integrally casted test bars for individual types of production. It was demonstrated that HIP technology has a positive effect on mechanical properties of castings, especially for ductility.
|
153 |
Volba a optimalizace řezných podmínek pro progresivní výrobní technologii zalomeného hřídele / Data selection and optimisation of cutting conditions for progressive production technology of the crank shaftSonberger, Vít January 2015 (has links)
This thesis is focused on proposal of production process of assembled crankshaft. It consists of choice of tools, data selection and optimisation for manufacture of individual components and for the assembly. In the assembly are also calculated important parameters for pressing components. Selected cutting conditions are experimentally verified.
|
154 |
Céramiques transparentes de YAGNd pour applications laser : mise en forme et densification de pièces de grandes dimensions, élaboration d'architectures complexes par coulage en bande / NdYAG transparent ceramics for laser applications : shaping and sintering of large samples, elaboration of complex architectures by tape castingBelon, Rémy 07 May 2019 (has links)
Ces travaux ont porté dans un premier temps sur la mise en forme et l’étude de la densification de céramiques transparentes de YAG:Nd de grandes dimensions. Le choix des paramètres de coulage sous pression et de compaction isostatique à froid ont permis de contrôler les dimensions et la microstructure des pièces crues élaborées. Le frittage sous vide de ces céramiques a cependant conduit à une hétérogénéité microstructurale entre le coeur et le bord des échantillons. Plus particulièrement, des pores résiduels ont été détectés au coeur des céramiques, altérant les propriétés optiques. Des post-traitements HIP (Hot Isostatic Pressing) ont alors été mis en oeuvre pour mieux contrôler la microstructure des céramiques. Cette voie a démontré son efficacité pour réduire en nombre et en taille les pores résiduels, avec cependant certaines limites concernant notamment la réoxydation des céramiques de grandes dimensions. Finalement, les céramiques élaborées ont montré des performances laser proches de celles des monocristaux de même composition.Dans un second temps, un procédé de coulage en bande pour l’élaboration de céramiques transparentes de YAG multicouches a été développé. Plus particulièrement, un travail original a été mené sur l’étude de l’influence de la formulation des suspensions sur les propriétés mécaniques des bandes céramiques crues. Cette étude a ainsi permis d’élaborer des bandes pouvant être ultérieurement manipulées et transformées. Une céramique multicouche avec une bande centrale dopée en ion Nd3+ d’épaisseur contrôlée a alors pu être mise en forme par thermocompression de bandes de différentes compositions (YAG et YAG:Nd). Après déliantage et frittage, une céramique transparente de type « guide d’onde planaire » a finalement été obtenue. / The first step of this work was focused on the shaping and sintering of large sized Nd:YAG transparent ceramics. The choice of the pressure casting and cold isostatic pressing parameters allowed to control the thickness and the microstructure of the green bodies. However, vacuum sintering of these parts led to a microstructural heterogeneity between the core and the edge of the samples. More particularly, residual pores have been detected in the core of the ceramics, decreasing the optical properties. Then, HIP (Hot Isostatic Pressing) post-treatments were implemented to control the ceramics microstructure. This route helped to reduce the number and size of residual pores. But limitations appeared, especially concerning the large ceramics. Finally, the obtained ceramics showed laser performances close to those of the single crystals of same composition.The second part was devoted to the development of a tape casting process for the elaboration of YAG multilayered transparent ceramics. More particularly, the influence of the slurry formulation on the mechanical properties of the green tapes was studied. This original work allowed the shaping of green tapes with good mechanical properties and a controlled organic content. Then, a multilayered ceramic with a central Nd-doped layer could be elaborated by thermolamination of layers with different compositions (YAG and YAG: Nd). After debinding and sintering, a transparent ceramic planar waveguide was finally obtained.
|
155 |
Processing Aluminum Oxide for the Control of Microstructural Texture and Optical PropertiesAndrew P Schlup (8791136) 01 May 2020 (has links)
Transparent polycrystalline aluminum oxide is a promising optical material, particularly in applications that require ballistic protection. However, the rhombohedral crystal structure of alumina limits its transparency due to birefringent scattering. One method of reducing birefringent scattering is to align the particles along the same crystallographic direction, minimizing the refractive index mismatch. This dissertation explores the use of high aspect-ratio platelet-morphology alumina powder in order to process a crystallographically aligned polycrystalline alumina part, with improved optical properties. The optimal hot-pressing parameters of non-pre-aligned platelet alumina were explored, showing that a low pre-load pressure (0MPa), a high maximum temperature (1800°C), a low maximum pressure (10MPa), and a long isothermal hold time (>5hrs) yields dense, transparent parts. These parameters resulted in samples with a high in-line transmission (>65%) despite a large grain size (>60μm). This is due to a high degree of crystallographic orientation, which minimizes the refractive index mismatch between grains, reducing birefringent scattering. Pre-alignment resulted in a further increase in crystallographic orientation, indicating that the pre-alignment procedure effectively aligns the platelets along the same crystallographic orientation. However, pre-alignment resulted in a minimal improvement in optical properties due to the pre-aligned platelets decreasing the densification. Mechanical properties were characterized, resulting in a flexure stress and Vickers hardness of approximately 175MPa and 17GPa, respectively. These low mechanical properties are due to the large grain size. The Vickers hardness was also characterized along different alignment/hot-pressing directions, showing that the hardness matches that of sapphire along corresponding crystallographic directions. Modifications to the Rayleigh-Gans-Debye model were made, accounting for crystallographic orientation. The modified model more closely matches the experimental optical data, illustrating the importance of accounting for crystallographic alignment. This dissertation emphasizes the importance of characterizing optical losses in transparent ceramics and how they relate to the microstructure, as well as the significance of crystallographic alignment in a birefringent transparent ceramic like alumina.
|
156 |
The Control of Microstructural and Crystallographic Orientation via Ceramic Forming Methods for Improved Sintered TransparencyWilliam J Costakis (8787950) 01 May 2020 (has links)
<div>
<div>
<div>
<p>Transparent alumina is a candidate material for ballistic applications where visible or infrared
wavelength transmission is required. However, the transparency of polycrystalline alumina can be
limited due to the rhombohedral crystal structure being inherently birefringent. Birefringence
causes light scattering at grain boundaries and is detrimental to the transparency. It has been shown
experimentally that the application of a high magnetic field during processing can lead to
crystallographic alignment and the reduction of birefringent light scattering. This alignment
method is effective but is limited in terms of scalability. This research addresses these limitations
through the use of simple and cost-effective shear and elongational forming processes such as
uniaxial warm pressing and direct ink writing (DIW) for the improvement of final sintered
transparency. To further support the improvement of these processes as alternatives and to evaluate
the possibility of using powder ratios to improve the alignment, this research will also investigate
the sintering behavior during hot-pressing of equiaxed and platelet powders.
</p>
<p>Platelet ceramic-filled thermoplastic blends were developed and formed into sheets through
uniaxial warm pressing. The solids loading (30 – 40 vol.%) and platelet diameter (1.2 and 11μm)
were varied to compare effects on viscosity, percent reduction, and final alignment. All ceramic-
filled thermoplastic polymer blends exhibited pseudoplastic behavior. Crystallographic alignment
of green body samples was quantified by the orientation parameter (r) and grain misalignment
angle (full width at half maximum, FWHM) obtained from rocking curve analysis. Blends with
11μm diameter platelets displayed a higher temperature sensitivity constant, better flow properties,
and higher alignment compared to blends with 1.2μm diameter platelets. Optimal samples
produced with blends containing 30 vol.% of 11μm diameter platelets demonstrated an alignment
of r = 0.251 +/- 0.017; FWHM = 11.16° +/- 1.16°. A sample with optimal alignment was hot-pressed
to transparency and obtained an in-line transmission of 70.0% at 645nm. The final alignment of
this pre-aligned hot-pressed sample (r = 0.254 +/- 0.008; FWHM = 11.38° +/- 0.54°) improved when
compared to a non-pre-aligned sample (r = 0.283 +/- 0.005; FWHM = 13.40° +/- 0.38°).</p><p>Additionally, the use of direct ink writing, an additive manufacturing technique, as a viable
alignment process for producing transparent alumina was investigated. Highly loaded (> 54 vol.%) equiaxed alumina suspensions were developed with platelet additions ranging from 0-20vol.% of
the total solids loading. An increase in the amount of platelet powders from 5-20vol.% increased
the dynamic yield stress from 104Pa to 169Pa and decreased in the equilibrium storage modulus
from 17,036Pa to 13,816Pa. It was found that the DIW process significantly increased the
alignment in one orientation when compared to samples cast from the same suspensions and this
behavior may be connected to the rheological properties. Lastly, an optical analysis showed that
sample developed with 5vol.% platelet suspensions had higher in-line transmission values across
the visible spectrum when compared to samples developed with 20vol.% suspensions. A sample
cast from a 5vol.% platelet suspensions had the lowest grain alignment but possessed an in-line
transmission of 42.8% at 645nm, which was the highest of the samples produced in this study. An
optical loss analysis showed, that this sample has the lowest backwards scattering losses due to
residual porosity and this result was supported by the density data. It is suggested that the
alignment of the DIW samples is more complex and a more advanced texture analysis will need
to be conducted to properly characterize the grain alignment.</p><p>Lastly, the densification behavior of equiaxed and platelet powder ratios with no intentional
pre-alignment was investigated. An initial sintering investigation identified the optimum
maximum pressure selected for the hot-pressing process as 20MPa. Under the selected hot-
pressing parameters, the effects of 0, 25, 50, 75, and 100wt.% equiaxed powder additions on the
sintering behavior, optical properties, and grain alignment was investigated. The data showed that
an increase in the amount of equiaxed powders decreased the initial powder compact
displacements rate. Additionally, an increase in the wt.% equiaxed powders from 0wt% to 75wt%
decreases the in-line transmission from 70.9% to 40.2%, respectively at 645nm. Lastly, an increase
in the wt.% equiaxed powders from 0wt% to 75wt decreased the alignment from (r = 0.321 +/- 0.005;
FWHM = 16.26° +/- 0.40°) to (r = 0.509 +/- 0.022; FWHM = 34.63° +/- 2.61°), respectively.</p></div></div></div>
|
157 |
Herstellung von TRIP-Matrix-Compositen auf der Basis unterschiedlicher Sinterverfahren und deren VergleichYanina, Anna 10 June 2013 (has links)
Die neuen TRIP-Matrix-Composite-Werkstoffe - verstärkt durch mit MgO teilstabilisiertem ZrO2 - gestatten es, durch die Besonderheiten der beteiligten Phasen eine gute Eigenschaftskombination hinsichtlich hoher Festigkeits- und Dehnungswerte zu erzielen. Aus diesem Grund ist die vorliegende Arbeit der Erforschung wissenschaftlicher Grundlagen zur Herstellung von TRIP-Matrix-Compositen sowie zur Analyse deren Eigenschaften in Abhängigkeit von den unterschiedlichen pulvermetallurgischen Herstellungsverfahren, wie konventionelles und konduktives Sintern sowie Heißpressen gewidmet worden. Als Ergebnis ist ein tieferes Verständnis der Kinetik von Sinterprozessen mit dem Aufbau eines physikalisch-mathematischen Modells festzuhalten. Ferner wurden mit weiterführenden Untersuchungen erste Ansätze zur Auslegung von Warmumformprozessen von gesinterten Halbzeugen aus dem Verbundwerkstoff durch quantitative Beschreibung der Entfestigungskinetik geleistet.
|
158 |
Stamping Condition Monitoring : A complete measuring and process control system for Husqvarna EdgeJohansson, Theodor January 2022 (has links)
The project covers the substitution of a stamping shut height measurement at the chainsaw chain factory Husqvarna Edge, with a new sensor-based processmonitoring system, set to increase productivity and decrease running costs. The workflow covers the span from external and needs analysis to development and testing of both hardware and software, in conjunction with communication with external suppliers to find the most usable and profitable solution going forward. Regarding hardware was inductive / eddy-current distance measurement sensors the most suitable for the stamping press environment, providing high sample rate and repeatability to a micrometre level, while subjected to oil andvibration. Husqvarna’s state of the art stamping setup is not yet fully supported by process monitoring suppliers, which resulted in the creation of the new program called Live Height, which was successfully used for sensor evaluation and serves as an example for suppliers to expand upon. This work provides several options in different price ranges for Husqvarna’s management to make decisions upon.
|
159 |
Interpreting process data of wet pressing process: Part 2: Verification with real valuesBergmann, Jana, Dörmann, Hans, Lange, Rüdiger 22 October 2019 (has links)
For the analysis of the wet pressing process, which was presented in the first part of this paper, a theoretical approach was chosen. This enabled the pre-definition of three quality-related priorities which now will be considered in detail in the second part. For further analysis, real process data, recorded in an early phase of the process implementation, are used. The challenge is that in this process status, the availability of data is limited or the data sets are incomplete. Supported by the theoretical approach, an easier interpretation of the process data, and in case of ambiguous issues, an accelerated decision making is expected. The objective is to show that this combination is suitable for the process analysis in an early production phase.
|
160 |
Interpreting process data of wet pressing process: Part 1: Theoretical approachBergmann, Jana, Dörmann, Hans, Lange, Rüdiger 22 October 2019 (has links)
The wet pressing process represents a new production method for carbon fibre-reinforced plastics components. Due to the low cycle times, it is suitable for use in the automotive industry. Therefore, a sufficient degree of industrialisation needs to be achieved, which is characterised by a stable process. The knowledge about relevant process parameters, their interactions, and influence on the part quality builds the basis of an economic process. This is a major challenge, since in the early stage of process development the available amount of recorded process data is small and the data sets are not complete. As the implementation of time-, material-, and cost-intensive experiments represents no acceptable alternative, a theoretical approach is chosen. This article describes a theoretical procedure to define the critical factors of the wet pressing process with significantly less resource input.
|
Page generated in 0.0168 seconds