• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • Tagged with
  • 6
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Frame synchronization for PSAM in AWGN and Rayleigh fading channels

Jia, Haozhang 15 September 2005
Pilot Symbol Assisted Modulation (PSAM) is a good method to compensate for the channel fading effect in wireless mobile communications. In PSAM, known pilot symbols are periodically inserted into the transmitted data symbol stream and the receiver uses these symbols to derive amplitude and phase reference. <p> One aspect of this procedure, which has not received much attention yet, is the frame synchronization, i.e. the method used by the receiver to locate the time position of the pilot symbols. In this study, two novel non-coherent frame synchronization methods are introduced in which only the magnitude of received signal is used to obtain the timing of the pilot symbol. The methods are evaluated for both AWGN and frequency non-selective slow Rayleigh fading channels. <p> One synchronization technique is derived by standard maximum likelihood (ML) estimation formulation, and the other is obtained by using maximum a Posteriori probability (MAP) with a threshold test. Signal processing in the receiver uses simplifying approximations that rely on relatively high signal-to-noise ratio (SNR) as consistent with the reception of 16-QAM. Computer simulation has been used to test the acquisition time performance and the probability of false acquisition. Several lengths and patterns of pilot symbol sequences were tested where every 10th symbol was a pilot symbol and all other symbols were randomly selected data symbols. When compared with the other published synchronizers, results from this study show better performance in both AWGN and fading channels. Significantly better performance is observed in the presence of receiver frequency offsets.
2

Frame synchronization for PSAM in AWGN and Rayleigh fading channels

Jia, Haozhang 15 September 2005 (has links)
Pilot Symbol Assisted Modulation (PSAM) is a good method to compensate for the channel fading effect in wireless mobile communications. In PSAM, known pilot symbols are periodically inserted into the transmitted data symbol stream and the receiver uses these symbols to derive amplitude and phase reference. <p> One aspect of this procedure, which has not received much attention yet, is the frame synchronization, i.e. the method used by the receiver to locate the time position of the pilot symbols. In this study, two novel non-coherent frame synchronization methods are introduced in which only the magnitude of received signal is used to obtain the timing of the pilot symbol. The methods are evaluated for both AWGN and frequency non-selective slow Rayleigh fading channels. <p> One synchronization technique is derived by standard maximum likelihood (ML) estimation formulation, and the other is obtained by using maximum a Posteriori probability (MAP) with a threshold test. Signal processing in the receiver uses simplifying approximations that rely on relatively high signal-to-noise ratio (SNR) as consistent with the reception of 16-QAM. Computer simulation has been used to test the acquisition time performance and the probability of false acquisition. Several lengths and patterns of pilot symbol sequences were tested where every 10th symbol was a pilot symbol and all other symbols were randomly selected data symbols. When compared with the other published synchronizers, results from this study show better performance in both AWGN and fading channels. Significantly better performance is observed in the presence of receiver frequency offsets.
3

Analysis and optimization of pilot-aided adaptive coded modulation under noisy channel state information and antenna diversity

Duong, Duc Van January 2006 (has links)
<p>The thesis is largely built on a collection of published and submitted papers where the main focus is to analyze and optimize single-carrier adaptive coded modulation systems with and without antenna diversity. Multidimensional trellis codes are used as component codes. The majority of the analysis is done with both estimation and prediction errors being incorporated. Both channel estimation and prediction are performed using a pilot-symbol-assisted modulation scheme. Thus, known pilot symbols (overhead information) must be transmitted; which consumes power and also degrades system spectral efficiency. Both power consumption and pilot insertion frequency are optimized such that they are kept at necessary values to maximize system throughput without sacrificing the error rate performance. The results show that efficient and reliable system performance can be achieved over a wide range of the considered average channel quality. Going from a single-input single-output system to both spatially uncorrelated and correlated single-input multiple-ouput (SIMO) systems, and further to an uncorrelated multiple-input multiple-output (MIMO) diversity system, is the evolution of the thesis. In the SIMO case, maximum ratio combining is used to combine the incoming signals, whereas the signals are space-time combined in the MIMO diversity system. The multiple-input single-output system comes out as a special case of a MIMO system. Besides the spatially uncorrelated antenna array, the effect of spatial correlation is also considered in the SIMO case. In this case, only prediction error is considered and channel estimation is assumed to be perfect. At first, the impact of spatial correlation in a predicted system originally designed to operate on uncorrelated channels is quanitifed. Then, a maximum a posteriori (MAP)-optimal “space-time predictor” is derived to take spatial correlation into account. As expected, the results show that the throughput is still lower than the uncorrelated system, but the degradation is decreased when the MAP-optimal space-time predictor is used. Thus, by exploiting the correlation properly, the degradation can be reduced. By numerical examples, we demonstrate the potential effect of limiting the predictor complexity, of fixing the pilot spacing, as well as of assuming perfect estimation. The two first simplifications imply lower system complexity and feedback rate, whereas the last assumption is usually made to ease the mathematical analysis. The numerical examples indicate that all the simplifications can be done without serious impact on the predicted system performance.</p>
4

Analysis and optimization of pilot-aided adaptive coded modulation under noisy channel state information and antenna diversity

Duong, Duc Van January 2006 (has links)
The thesis is largely built on a collection of published and submitted papers where the main focus is to analyze and optimize single-carrier adaptive coded modulation systems with and without antenna diversity. Multidimensional trellis codes are used as component codes. The majority of the analysis is done with both estimation and prediction errors being incorporated. Both channel estimation and prediction are performed using a pilot-symbol-assisted modulation scheme. Thus, known pilot symbols (overhead information) must be transmitted; which consumes power and also degrades system spectral efficiency. Both power consumption and pilot insertion frequency are optimized such that they are kept at necessary values to maximize system throughput without sacrificing the error rate performance. The results show that efficient and reliable system performance can be achieved over a wide range of the considered average channel quality. Going from a single-input single-output system to both spatially uncorrelated and correlated single-input multiple-ouput (SIMO) systems, and further to an uncorrelated multiple-input multiple-output (MIMO) diversity system, is the evolution of the thesis. In the SIMO case, maximum ratio combining is used to combine the incoming signals, whereas the signals are space-time combined in the MIMO diversity system. The multiple-input single-output system comes out as a special case of a MIMO system. Besides the spatially uncorrelated antenna array, the effect of spatial correlation is also considered in the SIMO case. In this case, only prediction error is considered and channel estimation is assumed to be perfect. At first, the impact of spatial correlation in a predicted system originally designed to operate on uncorrelated channels is quanitifed. Then, a maximum a posteriori (MAP)-optimal “space-time predictor” is derived to take spatial correlation into account. As expected, the results show that the throughput is still lower than the uncorrelated system, but the degradation is decreased when the MAP-optimal space-time predictor is used. Thus, by exploiting the correlation properly, the degradation can be reduced. By numerical examples, we demonstrate the potential effect of limiting the predictor complexity, of fixing the pilot spacing, as well as of assuming perfect estimation. The two first simplifications imply lower system complexity and feedback rate, whereas the last assumption is usually made to ease the mathematical analysis. The numerical examples indicate that all the simplifications can be done without serious impact on the predicted system performance.
5

A Comparison Of Time-switched Transmit Diversity And Space-time Coded Systems Over Time-varying Miso Channels

Koken, Erman 01 September 2011 (has links) (PDF)
This thesis presents a comparison between two transmit diversity schemes, namely space-time coding and time-switched transmit diversity (TSTD) over block-fading and time-varying multi-input single-output (MISO) channels with different channel parameters. The schemes are concatenated with outer channel codes in order to achieve spatio-temporal diversity. The analytical results are derived for the error performances of the systems and the simulation results as well as outage probabilities are provided. Besides, the details of the pilot-symbol-aided modulation (PSAM) technique are investigated and the error performances of the systems are analyzed when the channel state information is estimated with PSAM. It is demonstrated using the analytical and simulation results that TSTD have a comparable error performance with the space-time coding techniques and it even outperforms the space-time codes for some channel parameters. Our results indicate that TSTD can be suggested as an alternative to space-time codes in some time-varying channels especially due to the implementation simplicity.
6

Bandwidth Efficiency and Power Efficiency Issues for Wireless Transmissions

Chen, Ning 31 March 2006 (has links)
As wireless communication becomes an ever-more important and pervasive part of our everyday life, system capacity and quality of service issues are becoming more critical. In order to increase the system capacity and improve the quality of service, it is necessary that we pay closer attention to bandwidth and power efficiency issues. Orthogonal Frequency Division Multiplexing (OFDM) is a multicarrier modulation technique for high speed data transmission and is generally regarded as bandwidth efficient. However, OFDM signals suffer from high peak-to-average power ratios (PARs) which lead to power inefficiency in the RF portion of the transmitter. Moreover, in OFDM, the well-known pilot tone assisted modulation (PTAM) technique utilizes a number of dedicated training pilots to acquire the channel state information (CSI), resulting in somewhat reduced bandwidth efficiency. In this dissertation, we will address the above mentioned bandwidth and power efficiency issues in wireless transmissions. To avoid bandwidth efficiency loss due to dedicated training, we will first develop a superimposed training framework that can be used to track the frequency selective as well as the Doppler shift characteristics of a channel. Later on, we will propose a generalized superimposed training framework that allows improved channel estimates. To improve the power efficiency, we adopt the selected mapping (SLM) framework to reduce the PARs for both OFDM and forward link Code Division Multiple Access (CDMA). We first propose a dynamic SLM algorithm to greatly reduce the computational requirement of SLM without sacrificing its PAR reducing capability. We propose a number of blind SLM techniques for OFDM and for forward link CDMA; they require no side information and are easy to implement. Our proposed blind SLM technique for OFDM is a novel joint channel estimation and PAR reduction algorithm, for which bandwidth efficiency power efficiency - complexity - bit error rate tradeoffs are carefully considered.

Page generated in 0.0262 seconds