• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 7
  • 2
  • 1
  • 1
  • Tagged with
  • 31
  • 12
  • 10
  • 9
  • 9
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Snf1 Mediated Phosphorylation and Activation of PAS Kinase

Badal, Bryan D. 01 September 2014 (has links) (PDF)
Nutrient sensing kinases sense available nutrients and regulate cell activity accordingly. Three of these enzymes are AMP regulated kinase (AMPK, or Snf1 in yeast), PAS kinase, and target of rapamycin (TOR), are conserved from yeast to man and have overlapping function. AMPK and Snf1 are important in sensing when nutrient status in the cell is low and down regulating energy consuming pathways. PAS kinase is required for glucose homeostasis in the cell, and responds to glucose levels. TOR senses nutrients such as amino acids and upregulates cell growth pathways primarily through protein synthesis. Due to the varying nature of these enzymes, cross talk is expected in order for the cell to properly regulate cellular metabolism and growth in response to energy and nutrient availability. Previous studies have shown that activation of yeast PAS kinase under nutrient stress conditions requires the presence of Snf1. The aim of this thesis is to determine whether Snf1 directly phosphorylates and activates PAS kinase through both in vivo and in vitro approaches. PAS kinase was found to require Snf1 for both activation and phosphorylation in vivo. In vitro kinase assays were also performed to confirm a direct phosphorylation event. The results from this study support the direct phosphorylation and activation of PAS kinase by Snf1, linking cellular energy status to glucose allocation.
22

Use Of The Ambiguity Function Technique For Target Detection In Phase Coded Continuous Wave Radars

Cankaya, Erkan 01 December 2005 (has links) (PDF)
The goal of this thesis study is to investigate the Ambiguity Function Technique for target detection in phase-coded continuous wave radar. Also, phase shift keying techniques are examined in detail. Continuous Wave (CW) Radars, which are also known as Low Probability of Intercept (LPI) radars, emit continuous signals in time which are modulated by either frequency modulation or phase modulation techniques. Modulation of the transmitted radar signal is needed to estimate both the range and the radial velocity of the detected targets. In this thesis, Phase Shift Keying (PSK) techniques such as the Barker codes, Frank codes, P1, P2, P3, P4 codes will be employed for radar signal modulation. The use of Ambiguity Function, which is a non-linear Time- Frequency Representation (TFR), for target detection will be investigated in phasecoded CW radars for different target scenarios.
23

Wireless Implantable EMG Sensing Microsystem

Farnsworth, Bradley David 30 July 2010 (has links)
No description available.
24

Full Diversity Noncoherent Space-Time Block Codes Designs via Unique Factorizations of Signals

Xia, Dong 10 1900 (has links)
<p>In this thesis, a MISO wireless communication system having even transmitter antennas and a single receiver antenna is considered, where neither the transmitter nor the receiver knows channel state information. Particularly when the number of transmitter antennas is two, a novel concept called a uniquely factorable constellation pair (UFCP) is first proposed for the systematic design of a noncoherent full diversity collaborative unitary space-time block code by normalizing two Alamouti codes. It is proved that such a unitary UFCP code assures the unique identification of both channel coefficients and transmitted signals in a noise-free case as well as full diversity for the noncoherent maximum likelihood (ML) receiver in a noise case. To further improve error performance, an optimal unitary UFCP code is designed by appropriately and uniquely factorizing a pair of energy-efficient cross quadrature amplitude modulation (QAM) constellations to maximize the coding gain subject to a transmission bit rate constraint. After a deep investigation of the fractional coding gain function, a technical approach developed in this thesis to maximizing the coding gain is to carefully design an energy scale to compress the first three largest energy points in the corner of the QAM constellations in the denominator of the objective as well as carefully design a constellation triple forming two UFCPs, with one collaborating with the other two so as to make the accumulated minimum Euclidean distance along the two transmitter antennas in the numerator of the objective as large as possible and at the same time, to avoid as many corner points of the QAM constellations with the largest energy as possible to achieve the minimum of the numerator. In other words, the optimal coding gain is attained by intelligent constellations collaboration and efficient energy compression. Another contribution of this thesis is to generalize the design for the two transmitter antennas into that of the noncoherent system with any even number of transmitter antennas. Using the Alamouti coding scheme and the Toeplitz matrix structure, a novel noncoherent nonunitary space-time block code, which is called an Alamoutibased Toeplitz space-time block code, is proposed. By the fundamentals of Galois theory and algebraic number theory, two important properties on the two Alamouti codes generated from a pair of coprime phase shift keying (PSK) constellations, i.e., the uniqueness of factorization itself and the shift-invariant uniqueness of factorization, are first revealed and rigorously proved. Then, it is further shown that it is these two kinds of the unique factorizations that enable the unique blind identification of both the channel coefficients and the transmitted signals by only processing two block received signals as well as noncoherent full diversity with a generalized likelihood ratio test (GLRT) receiver. In addition, a full diversity unitary code design is also proposed by simply applying the QR decomposition to the full diversity nonunitary Alamoutibased Toeplitz space-time block code. Computer simulations demonstrate that error performance of both optimal unitary UFCP code and Alamouti-based Toeplitz code presented in this thesis outperform those of the differential code and the SNR-efficient training code, which is the best code in current literatures for the system.</p> / Master of Applied Science (MASc)
25

Studium vlivů frekvenčních nestabilit oscilátorů v družicových komunikačních systémech / Studies of Influences of Oscillators Frequency Instabilities in Satellite Communication Systems

Baran, Ondřej January 2011 (has links)
The dissertation thesis deals with a study of an influence of a simultaneous incidence of an additive thermal noise and a multiplicative phase noise on the useful signal transmission in narrowband satellite communication systems. While the additive thermal noise affects the useful signal only on the receiver side of the communication system, the multiplicative phase noise is produced in all system oscillators. One investigates how the receiver filter bandwidth reduction takes effect on the influence of individual noise types. The thesis is divided into four units. The first one (chapters 4 and 5) solves the ways of modeling of both noise types. In the second part (chapter 6), on the simple example, the primary analysis of the phase noise influence is made. Basic modulation schemes used in the satellite communication are also discussed (chapter 7). Third part (chapter 8) is devoted to the modeling of a general digital system with a M PSK modulation made directly on the main carrier wave. The last part (chapter 9) describes the modeling of a digital system with a BPSK modulation on the auxiliary subcarrier wave followed by an SSB modulation on the main carrier wave. General conclusions are deduced from obtained simulation results.
26

DPSK modulation format for optical communication using FBG demodulator / DPSK modulering för optisk kommunikation med demodulering av FBG

Jacobsson, Fredrik January 2004 (has links)
<p>The task of the project was to evaluate a differential phase shift keying demodulation technique by replacing a Mach-Zehnder interferometer receiver with an optical filter (Fiber Bragg Grating). Computer simulations were made with single optical transmission, multi channel systems and transmission with combined angle/intensity modulated optical signals. The simulations showed good results at both 10 and 40 Gbit/s. Laboratory experiments were made at 10 Gbit/s to verify the simulation results. It was found that the demodulation technique worked, but not with satisfactory experimental results. The work was performed at Eindhoven University of Technology, Holland, within the framework of the STOLAS project at the department of Electro-optical communication.</p>
27

DPSK modulation format for optical communication using FBG demodulator / DPSK modulering för optisk kommunikation med demodulering av FBG

Jacobsson, Fredrik January 2004 (has links)
The task of the project was to evaluate a differential phase shift keying demodulation technique by replacing a Mach-Zehnder interferometer receiver with an optical filter (Fiber Bragg Grating). Computer simulations were made with single optical transmission, multi channel systems and transmission with combined angle/intensity modulated optical signals. The simulations showed good results at both 10 and 40 Gbit/s. Laboratory experiments were made at 10 Gbit/s to verify the simulation results. It was found that the demodulation technique worked, but not with satisfactory experimental results. The work was performed at Eindhoven University of Technology, Holland, within the framework of the STOLAS project at the department of Electro-optical communication.
28

Low Correlation Sequences Over AM-PSK And QAM Constellations

Anand, M 04 1900 (has links)
Direct-Sequence Code Division Multiple Access (DS-CDMA), over the last few years, has become a popular technique and finds a place in many modern communication systems. The performance of this technique is closely linked to the signature (or spreading) sequences employed in the system. In the past, there have been many successful attempts by research groups to construct families of signature sequences that offer the potential gains promised by theoretical bounds. In this thesis, we present constructions of families of signature sequences over the AM-PSK and QAM alphabet with low correlation. In this thesis, we construct a family of sequences over the 8-ary AM-PSK constella- tion, Family AOpt(16) that is asymptotically optimal with respect to the Welch bound on maximum magnitude of correlation for complex sequences. The maximum magnitude of correlation for this family, θmax, is upper bounded by √N , where N is the period of the sequences. The 8-ary AM-PSK constellation is a subset of the 16-QAM constellation. We also construct two families of sequences over 16-QAM, Family A16A, and Family A16,B , with the maximum magnitude of correlation upper bounded by √2√N . We construct a family, A(M 2), of sequences over the 2m+1-ary AM-PSK constellation of period N = 2r- 1 and family size (N + 1)/2m-1 . The 2m+1-ary AM-PSK constellation is a subset of the M 2-QAM constellation with M =2m . The maximum nontrivial normalized correlation parameter is bounded above by θmax < a √N where a ranges from 1.34 in the case of M 2 = 16 to √5 for large m. Apart from low correlation values, the family possesses several interesting and useful features. In Family A(M 2), users have the ability to transmit 2m bits of data per period of the spreading sequence. The sequences in Family A(M 2) are balanced; all points from the 2m+1-ary AM-PSK constellation occur approximately equally often in sequences of long period. The Euclidean distance between the signals assigned to a particular user in A(M 2), corresponding to different data symbols, is larger than the corresponding value for the case when 2m+1-PSK modulation and spreading is used. Perhaps most interestingly, Family A(M 2) permits users on the reverse link of a CDMA system to communicate asynchronously at varying data rates by switching between different QAM constellations. Family A(M 2) is compatible with QPSK sequence families S(p) in the sense that the maximum correlation magnitude is increased only slightly if one adds sequences from (p) S(p)\ S(0) to Family A(M 2). We also construct families of sequences over AM-PSK that tradeoff data rate per sequence period and θmax for a given family size. We have extended the construction of sequences over AM-PSK constellation to construct sequences over the M 2-QAM constellation for M =2m . The QAM sequence families, Families (AM 2), have size, data rate and minimum squared Euclidean distance same as the corresponding AM-PSK construction but have higher values of θmax. Also included in the thesis are constructions for large families of sequences over the M 2-QAM alphabet.
29

Investigations On PSK Spectrum Shaping Techniques For Space Communication Applications

Dhoolipala, Venkata Ramana 08 1900 (has links) (PDF)
No description available.
30

Enhanced Distance Measuring Equipment Data Broadcast Design, Analysis, Implementation, and Flight-Test Validation

Naab-Levy, Adam O. January 2015 (has links)
No description available.

Page generated in 0.0134 seconds