Spelling suggestions: "subject:"painlevé"" "subject:"painleve""
1 |
Ba¨cklund transformations, the Painleve̓ property and some of their applicationsWong, Wing-tak, 黃永德 January 1987 (has links)
published_or_final_version / Physics / Doctoral / Doctor of Philosophy
|
2 |
Nonlinear field equations and Painleve testEuler, Norbert 29 May 2014 (has links)
M.Sc. (Theoretical Physics) / Please refer to full text to view abstract
|
3 |
Superintégrabilité avec séparation de variables en coordonnées polaires et intégrales du mouvement d’ordre supérieur à deuxTremblay, Frédérick 10 1900 (has links)
Dans cette thèse, nous proposons de nouveaux résultats de systèmes superintégrables séparables en coordonnées polaires. Dans un premier temps, nous présentons une classification complète de tous les systèmes superintégrables séparables en coordonnées polaires qui admettent une intégrale du mouvement d'ordre trois. Des potentiels s'exprimant en terme de la sixième transcendante de Painlevé et de la fonction elliptique de Weierstrass sont présentés. Ensuite, nous introduisons une famille infinie de systèmes classiques et quantiques intégrables et exactement résolubles en coordonnées polaires. Cette famille s'exprime en terme d'un paramètre k. Le spectre d'énergie et les fonctions d'onde des systèmes quantiques sont présentés. Une conjecture postulant la superintégrabilité de ces systèmes est formulée et est vérifiée pour k=1,2,3,4. L'ordre des intégrales du mouvement proposées est 2k où k ∈ ℕ. La structure algébrique de la famille de systèmes quantiques est formulée en terme d'une algèbre cachée où le nombre de générateurs dépend du paramètre k. Une généralisation quasi-exactement résoluble et intégrable de la famille de potentiels est proposée. Finalement, les trajectoires classiques de la famille de systèmes sont calculées pour tous les cas rationnels k ∈ ℚ. Celles-ci s'expriment en terme des polynômes de Chebyshev. Les courbes associées aux trajectoires sont présentées pour les premiers cas k=1, 2, 3, 4, 1/2, 1/3 et 3/2 et les trajectoires bornées sont fermées et périodiques dans l'espace des phases. Ainsi, les résultats obtenus viennent renforcer la possible véracité de la conjecture. / In this thesis, we propose new superintegrable systems separable in polar coordinates. After the introduction, in chapter 2, we present a complete classification of all separable systems in polar coordinates which admit a third order integral in addtion to the second order one responsible for the separation of variables. New potentials expressed in terms of the sixth Painlevé transcendent and of the Weierstrass elliptic function are obtained. In chapter 3 we introduce an infinite family of integrable and exactly sovable classical and quantum systems separable in polar coordinates. This family is described in term of a parameter k. The energy spectrum and the wave functions of the quantum systems are obtained. A conjecture postulating the superintegrability of these systems is formulated and is verified for the first cases k = 1,2,3,4. The order of the integrals is 2k where k ∈ ℕ. The algebraic structure of the family of quantum systems is formulated in term of a hidden algebra where the number of generators depends on the parameter k. A quasi-exactly solvable and integrable generalization of the family of potentials is proposed. Finally in chapter 4, the classical trajectories of the family of systems are calculated for all the rational cases k ∈ ℚ. Those are expressed in term of Chebyshev polynomials. We plot the curves associated with the trajectories for k=1,2,3,4,1/2, 1/3 and 3/2. The bounded curves are closed and periodic in the two dimensional phase space. Those results obtained reinforce the possible veracity of the conjecture.
|
4 |
Classification of separable superintegrable systems of order four in two dimensional Euclidean space and algebras of integrals of motion in one dimensionSajedi, Masoumeh 01 1900 (has links)
No description available.
|
5 |
Superintégrabilité avec séparation de variables en coordonnées polaires et intégrales du mouvement d’ordre supérieur à deuxTremblay, Frédérick 10 1900 (has links)
Dans cette thèse, nous proposons de nouveaux résultats de systèmes superintégrables séparables en coordonnées polaires. Dans un premier temps, nous présentons une classification complète de tous les systèmes superintégrables séparables en coordonnées polaires qui admettent une intégrale du mouvement d'ordre trois. Des potentiels s'exprimant en terme de la sixième transcendante de Painlevé et de la fonction elliptique de Weierstrass sont présentés. Ensuite, nous introduisons une famille infinie de systèmes classiques et quantiques intégrables et exactement résolubles en coordonnées polaires. Cette famille s'exprime en terme d'un paramètre k. Le spectre d'énergie et les fonctions d'onde des systèmes quantiques sont présentés. Une conjecture postulant la superintégrabilité de ces systèmes est formulée et est vérifiée pour k=1,2,3,4. L'ordre des intégrales du mouvement proposées est 2k où k ∈ ℕ. La structure algébrique de la famille de systèmes quantiques est formulée en terme d'une algèbre cachée où le nombre de générateurs dépend du paramètre k. Une généralisation quasi-exactement résoluble et intégrable de la famille de potentiels est proposée. Finalement, les trajectoires classiques de la famille de systèmes sont calculées pour tous les cas rationnels k ∈ ℚ. Celles-ci s'expriment en terme des polynômes de Chebyshev. Les courbes associées aux trajectoires sont présentées pour les premiers cas k=1, 2, 3, 4, 1/2, 1/3 et 3/2 et les trajectoires bornées sont fermées et périodiques dans l'espace des phases. Ainsi, les résultats obtenus viennent renforcer la possible véracité de la conjecture. / In this thesis, we propose new superintegrable systems separable in polar coordinates. After the introduction, in chapter 2, we present a complete classification of all separable systems in polar coordinates which admit a third order integral in addtion to the second order one responsible for the separation of variables. New potentials expressed in terms of the sixth Painlevé transcendent and of the Weierstrass elliptic function are obtained. In chapter 3 we introduce an infinite family of integrable and exactly sovable classical and quantum systems separable in polar coordinates. This family is described in term of a parameter k. The energy spectrum and the wave functions of the quantum systems are obtained. A conjecture postulating the superintegrability of these systems is formulated and is verified for the first cases k = 1,2,3,4. The order of the integrals is 2k where k ∈ ℕ. The algebraic structure of the family of quantum systems is formulated in term of a hidden algebra where the number of generators depends on the parameter k. A quasi-exactly solvable and integrable generalization of the family of potentials is proposed. Finally in chapter 4, the classical trajectories of the family of systems are calculated for all the rational cases k ∈ ℚ. Those are expressed in term of Chebyshev polynomials. We plot the curves associated with the trajectories for k=1,2,3,4,1/2, 1/3 and 3/2. The bounded curves are closed and periodic in the two dimensional phase space. Those results obtained reinforce the possible veracity of the conjecture.
|
6 |
Propriétés et classification des Hamiltoniens séparables possédant des intégrales d'ordre troisGravel, Simon January 2003 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
|
7 |
Painlevé Integrability and mixed P_III-P_V system solutions / Integrabilidade de Painlevé e soluções de sistema misto P_III-P_VAlves, Victor César Costa [UNESP] 21 February 2017 (has links)
Submitted by VICTOR CESAR COSTA ALVES null (victorc@ift.unesp.br) on 2017-03-24T17:06:35Z
No. of bitstreams: 1
document.pdf: 511663 bytes, checksum: 1bf722030b47e34e0031fc461efd9f67 (MD5) / Approved for entry into archive by Luiz Galeffi (luizgaleffi@gmail.com) on 2017-03-24T20:35:37Z (GMT) No. of bitstreams: 1
alves_vcc_me_ift.pdf: 511663 bytes, checksum: 1bf722030b47e34e0031fc461efd9f67 (MD5) / Made available in DSpace on 2017-03-24T20:35:37Z (GMT). No. of bitstreams: 1
alves_vcc_me_ift.pdf: 511663 bytes, checksum: 1bf722030b47e34e0031fc461efd9f67 (MD5)
Previous issue date: 2017-02-21 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / O presente trabalho trata de um abordagem de aplicações em física dos métodos matemáticos de integrabilidade de Painlevé, por outro lado também aborda o formalismo de hierarquias integráveis e o modelo de 2M-bosons onde são usados métodos de equações diferenciais bem como um método para soluções usando aproximantes de Padé. / The current work aims at applications of mathematical methods of Painlevé integrability in physics, on the other side it also approaches the integrable hierarchies formalism and the 2M-bose model where differential equations methods are used as well as a method for solutions using Padé approximants.
|
8 |
O problema de Painlevé para campos de Pfaff / The Painlevé problem under Pfaff fieldOliveira, Michely Santos 25 February 2013 (has links)
Made available in DSpace on 2015-03-26T13:45:35Z (GMT). No. of bitstreams: 1
texto completo.pdf: 847446 bytes, checksum: b60238db8a7afeb1ed5646e1d32caf84 (MD5)
Previous issue date: 2013-02-25 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / In this work we studied the Painlevé s Problem for Pfaff Fields. The motivation is Painlevé s question about the possibility of giving a bound for the genus of the general solution of an algebraic differential equation in two variables which has a rational first integral. In Some examples for Poincaré and Painlevé problem, Lins Neto found a family of foliations that gave a negative ansewer to this question. In Bounds for sectional genera of varieties invariant under Pfaff fields, Correa Junior and Jardim found a boundle to genera sectional of a projective variety invariant under Pfaff Fields. This work is to study the evidence given by the authors Correa Junior and Jardim. / Neste trabalho estudamos o Problema de Painlevé para Campos de Pfaff. A motivação para este estudo foi a questão levantada por Painlevé sobre a possibilidade de limitarmos o gênero da solução geral de uma equação diferencial algébrica em duas variáveis que possui uma integral primeira racional. Em Some examples for Poincaré and Painlevé problem, Lins Neto obteve uma família de folheações holomorfas que deram uma resposta negativa para este problema. Encontrar tal limitante tem sido um problema instigante para muitos matemáticos. Em Bounds for sectional genera of varieties invariant under Pfaff fields, Correa Junior e Jardim obtiveram um limitante para o gênero seccional de uma variedade projetiva invariante por um Campo de Pfaff. Este trabalho consiste em estudar a prova dada pelos autores Correa Junior e Jardim.
|
9 |
Fonctions de Painlevé et blocs conformes irréguliers / Painlevé functions and irregular conformal blocksRoussillon, Julien 28 May 2019 (has links)
Cette thèse a pour but de résoudre certains problèmes de connexion et de décrire diverses propriétés asymptotiques des fonctions de Painlevé V et I. Dans le cas de l’équation de Painlevé V, nous approchons ces problèmes en développant une nouvelle approche basée sur la théorie conforme des champs bidimensionelle. Nous proposons de calculer les blocs conformes irréguliers de première et seconde espèce par confluence des blocs conformes réguliers de Virasoro. Une conséquence de cette construction est la solution du problème de connexion de l’équation de Painlevé V entre 0 et +i∞. Les formules pour les normalisations relatives (constantes de connexion) de la fonction tau de Painlevé V entre 0, +∞, et +i∞ sont également proposées. Enfin, le développement asymptotique complet de la fonction tau à courte distance pour des données de monodromie génériques est prouvé. Ce résultat est obtenu en construisant une représentation de la fonction tau en termes d’un déterminant de Fredholm. Dans le cas de l’équation de Painlevé I, nous présentons les constantes de connexion relatant les asymptotiques de la fonction tau sur les cinq raies canoniques à l’infini. Ce résultat est obtenu en construisant une extension de la forme différentielle de Jimbo-Miwa-Ueno à l’espace des données de monodromie. Ces constantes de connexion sont exprimées en termes de dilogarithmes de coordonnées de type cluster dans l’espace des données de Stokes. / The aim of this thesis is to solve several connection problems and describe asymptotic properties of Painlevé V and I functions. In the case of Painlevé V equation, we approach these problems by developing a new toolbox based on two dimensional conformal field theory. We propose to compute irregular conformal blocks of the first and second kind by confluence of regular Virasoro conformal blocks. One consequence of this construction is the solution of the connection problem for Painlevé V equation between 0 and +i∞. Formulas for the relative normalizations (connection constants) of Painlevé V tau function between 0, +∞, and +i∞ are also proposed. Finally, the full asymptotic expansion of the tau function at short distances for generic monodromy data is proved. This result is obtained by constructing a Fredholm determinant representation for the tau function. In the case of Painlevé I equation, we present connection constants relating asymptotics of the tau function on the five canonical rays at infinity. This result is obtained by extending the definition of the Jimbo-Miwa-Ueno differential to the space of monodromy data. These connection constants are expressed in terms of dilogarithms of cluster type coordinates on the space of Stokes data.
|
10 |
Equações de Painlevé mistas e modelo PIII-PV simétricoRuy, Danilo Virges [UNESP] 31 March 2015 (has links) (PDF)
Made available in DSpace on 2015-06-17T19:34:56Z (GMT). No. of bitstreams: 0
Previous issue date: 2015-03-31. Added 1 bitstream(s) on 2015-06-18T12:46:43Z : No. of bitstreams: 1
000829086.pdf: 649617 bytes, checksum: d3f00788fe458b7e00736119967fad0f (MD5) / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / Esta tese aborda a conexão entre modelos integráveis e as equações de Painlevé. Começamos estendendo o método do truncamento modificado afim de encontrar transformações de Bäcklund para a hierarquia mKdV-Liouville e sua redução por auto-similaridade. Com este método, resolvemos parcialmente a conjectura de Kudryashov. Em seguida, estudamos o modelo misto AKNS-Lund-Regge estendido e mostramos que este modelo pode ser reduzido às equações PIV e PV para valores particulares dos parâmetros. Nós também construimos o modelo PIII-PV simétrico afim de unificar alguns casos da equação PIII com a equação PV. Posteriormente, buscamos os vínculos canônicos apropriados que reduzem o modelo 4-bósons ao modelo PIII-PV simétrico. Para isso, elaboramos o método do ansatz de vínculos. Complementarmente, apresentamos um método para encontrar soluções de equações diferenciais em D dimensões no adendo e aplicamos ao modelo 'lâmbda'fi'POT.4 / This thesis studies the connection among integrable models and Painlev'e equations. We begin by extending the modified truncation approach in order to find B¨acklund transformations for the mKdV-Liouville hierarchy and its self-similarity reduction. With this method, we solve Kudryashov's conjecture partially. Then we study the extended mixed AKNS-Lund-Regge model and show this model can be reduced to PIV and PV equation for particular values of the parameters. We also construct the symmetric PIII-PV model in order to unify some cases of the PIII equation with the PV equation. After, we search for canonical constraints for reduce the 4-bose model to the symmetric PIII-PV model. For find the correct constraints, we construct the method of ansatz of constraints. In addition, we show a method for finding solutions for differential equations inD dimensions in the addendum. We also apply this method for the 'lâmbda'fi'POT.4 model / FAPESP: 2010/18110-9
|
Page generated in 0.047 seconds