• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 2
  • Tagged with
  • 17
  • 17
  • 11
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Approximation radiale et méthode LATIN multiéchelle en temps et en espace

Passieux, Jean-Charles 01 December 2008 (has links) (PDF)
La prédiction du comportement de structures complexes mettant en jeu au moins deux échelles très différentes, tant spatiales que temporelles, nécessite le développement de méthodes de calcul avancées. Ce travail se base sur une stratégie de calcul multiéchelle récemment proposée au LMT-Cachan. Il s'agit d'une méthode de décomposition de domaine mixte qui intègre une procédure d'homogénéisation automatique en espace et en temps, ne présentant pas les inconvénients des méthodes d'homogénéisation classiques. Ce travail de thèse a pour objectif d'améliorer les performances et la robustesse de l'approche dans le cadre de problèmes tridimensionnels complexes (problèmes d'évolution viscoélastique avec contact frottant). Une procédure d'enrichissement automatique de l'espace macroscopique en temps est proposée pour conférer à la méthode l'extensibilité partiellement perdue dans certains cas de non-linéarités. Une nouvelle technique d'approximation spatio-temporelle adaptative (basée sur l'approximation radiale) est introduite dans le cas des matériaux à variables internes, afin de réduire le nombre de calculs et d'accroître la robustesse de l'approche. Enfin d'une manière générale, un certain nombre d'outils sont proposés pour réduire la taille des problèmes et maîtriser d'avantage les techniques d'approximations avancées utilisées. Les contributions proposées sont illustrées sur des exemples tridimensionnels issu d'un code éléments finis développé pendant la thèse.
2

Une stratégie de calcul multiéchelle avec homogénéisation en temps et en espace pour le calcul de structures fortement hétérogènes

Nouy, Anthony 05 December 2003 (has links) (PDF)
Une nouvelle stratégie de calcul multiéchelle est développée pour l'analyse de structures hétérogènes. Elle inclut une procédure d'homogénéisation automatique en temps et en espace et devrait se substituer aux stratégies d'homogénéisation standards dans certains domaines d'application. L'étude de points clés conditionnant les performances de la stratégie a également conduit à l'élaboration de nouveaux outils. Il est proposé une méthode de discrétisation saine des quantités d'interface pour les méthodes de décomposition de domaine mixtes. Une technique d'approximation du problème homogénéisé basée sur l'introduction d'une troisième échelle est également introduite. Enfin, il est proposé une méthode d'approximation robuste d'équations d'évolution linéaires, basée sur le concept d'approximation radiale (décomposition en variables séparées), qui permet la construction a priori d'une base réduite pertinente de fonctions spatiales. Ces améliorations permettent d'envisager l'analyse de structures composites à grand nombre de cellules.
3

Séparation des variables et facteurs de forme des modèles intégrables quantiques

Grosjean, Nicolas 25 June 2013 (has links) (PDF)
Les facteurs de forme et les fonctions de corrélation déterminent les quantités dynamiques mesurables associées aux modèles de théorie des champs et de mécanique statistique. Dans le cas de modèles intégrables en dimension 2, au-delà des propriétés du spectre ou de la fonction de partition, un des grands défis actuels concerne le calcul exact des facteurs de forme et des fonctions de corrélation.Le but de cette thèse est de développer une approche permettant de résoudre ce problème dans le cadre de la méthode de séparation des variables quantique de Skyanin. Cette méthode généralise au cas quantique et pour des systèmes avec un grand nombre de degrés de liberté la méthode de Hamilton-Jacobi en mécanique analytique. Le Hamiltonien est exprimé avec des opérateurs séparés, son spectre et ses états propres caractérisés par un système d'équations de Baxter résultant des structures algébriques de Yang-Baxter, caractéristiques de l'intégrabilité de ces modèles.Cette thèse a permis, pour les modèles de sine-Gordon (théorie des champs quantique) et de Potts chiral (modèle de physique statistique), le calcul des produits scalaires entre états propres du Hamiltonien, la résolution du problème inverse, i. e. l'expression des opérateurs du modèle en termes des variables séparées, ainsi que le calcul en termes de déterminants des facteurs de forme, i. e. des éléments de matrice des opérateurs locaux du modèle dans la base propre du Hamiltonien, ce qui constitue un pas important vers le calcul des fonctions de corrélation de ces modèles.
4

Superintégrabilité avec séparation de variables en coordonnées polaires et intégrales du mouvement d’ordre supérieur à deux

Tremblay, Frédérick 10 1900 (has links)
Dans cette thèse, nous proposons de nouveaux résultats de systèmes superintégrables séparables en coordonnées polaires. Dans un premier temps, nous présentons une classification complète de tous les systèmes superintégrables séparables en coordonnées polaires qui admettent une intégrale du mouvement d'ordre trois. Des potentiels s'exprimant en terme de la sixième transcendante de Painlevé et de la fonction elliptique de Weierstrass sont présentés. Ensuite, nous introduisons une famille infinie de systèmes classiques et quantiques intégrables et exactement résolubles en coordonnées polaires. Cette famille s'exprime en terme d'un paramètre k. Le spectre d'énergie et les fonctions d'onde des systèmes quantiques sont présentés. Une conjecture postulant la superintégrabilité de ces systèmes est formulée et est vérifiée pour k=1,2,3,4. L'ordre des intégrales du mouvement proposées est 2k où k ∈ ℕ. La structure algébrique de la famille de systèmes quantiques est formulée en terme d'une algèbre cachée où le nombre de générateurs dépend du paramètre k. Une généralisation quasi-exactement résoluble et intégrable de la famille de potentiels est proposée. Finalement, les trajectoires classiques de la famille de systèmes sont calculées pour tous les cas rationnels k ∈ ℚ. Celles-ci s'expriment en terme des polynômes de Chebyshev. Les courbes associées aux trajectoires sont présentées pour les premiers cas k=1, 2, 3, 4, 1/2, 1/3 et 3/2 et les trajectoires bornées sont fermées et périodiques dans l'espace des phases. Ainsi, les résultats obtenus viennent renforcer la possible véracité de la conjecture. / In this thesis, we propose new superintegrable systems separable in polar coordinates. After the introduction, in chapter 2, we present a complete classification of all separable systems in polar coordinates which admit a third order integral in addtion to the second order one responsible for the separation of variables. New potentials expressed in terms of the sixth Painlevé transcendent and of the Weierstrass elliptic function are obtained. In chapter 3 we introduce an infinite family of integrable and exactly sovable classical and quantum systems separable in polar coordinates. This family is described in term of a parameter k. The energy spectrum and the wave functions of the quantum systems are obtained. A conjecture postulating the superintegrability of these systems is formulated and is verified for the first cases k = 1,2,3,4. The order of the integrals is 2k where k ∈ ℕ. The algebraic structure of the family of quantum systems is formulated in term of a hidden algebra where the number of generators depends on the parameter k. A quasi-exactly solvable and integrable generalization of the family of potentials is proposed. Finally in chapter 4, the classical trajectories of the family of systems are calculated for all the rational cases k ∈ ℚ. Those are expressed in term of Chebyshev polynomials. We plot the curves associated with the trajectories for k=1,2,3,4,1/2, 1/3 and 3/2. The bounded curves are closed and periodic in the two dimensional phase space. Those results obtained reinforce the possible veracity of the conjecture.
5

Les systèmes super intégrables d’ordre trois séparables en coordonnées paraboliques

Popper, Iuliana Adriana 04 1900 (has links)
Ce mémoire est une poursuite de l’étude de la superintégrabilité classique et quantique dans un espace euclidien de dimension deux avec une intégrale du mouvement d’ordre trois. Il est constitué d’un article. Puisque les classifications de tous les Hamiltoniens séparables en coordonnées cartésiennes et polaires sont déjà complétées, nous apportons à ce tableau l’étude de ces systèmes séparables en coordonnées paraboliques. Premièrement, nous dérivons les équations déterminantes d’un système en coordonnées paraboliques et ensuite nous résolvons les équations obtenues afin de trouver les intégrales d’ordre trois pour un potentiel qui permet la séparation en coordonnées paraboliques. Finalement, nous démontrons que toutes les intégrales d’ordre trois pour les potentiels séparables en coordonnées paraboliques dans l’espace euclidien de dimension deux sont réductibles. Dans la conclusion de l’article nous analysons les différences entre les potentiels séparables en coordonnées cartésiennes et polaires d’un côté et en coordonnées paraboliques d’une autre côté. Mots clés: intégrabilité, superintégrabilité, mécanique classique, mécanique quantique, Hamiltonien, séparation de variable, commutation. / This thesis is a contribution to the study of classical and quantum superintegrability in a two-dimensional Euclidean space involving a third order integral of motion. It consists of an article. Because the classifications of all separable hamiltonians into Cartesian and polar coordinates are already complete, we bring to this picture the study of those systems in parabolic coordinates. First, we derive the determinating equations of a system into parabolic coordinates, after which we solve the obtained equations in order to find integrals of order three for potentials, which allow the separations of variables into the parabolic coordinates. Finally, we prove that all the third order integrals for separable potentials in parabolic coordinates in the Euclidean space of dimension two are reducible. In the conclusion of this article, we analyze the differences between the separable potentials in Cartesian and polar coordinates and the separable potentials in parabolic coordinates. Keywords: integrability, superintegrability, classical mechanics, quantum mechanics, Hamiltonian, separation of variables, commutation.
6

Classification of separable superintegrable systems of order four in two dimensional Euclidean space and algebras of integrals of motion in one dimension

Sajedi, Masoumeh 01 1900 (has links)
No description available.
7

Séparation des variables et facteurs de forme des modèles intégrables quantiques / Separation of variables and form factors of quantum integrable models

Grosjean, Nicolas 25 June 2013 (has links)
Les facteurs de forme et les fonctions de corrélation déterminent les quantités dynamiques mesurables associées aux modèles de théorie des champs et de mécanique statistique. Dans le cas de modèles intégrables en dimension 2, au-delà des propriétés du spectre ou de la fonction de partition, un des grands défis actuels concerne le calcul exact des facteurs de forme et des fonctions de corrélation.Le but de cette thèse est de développer une approche permettant de résoudre ce problème dans le cadre de la méthode de séparation des variables quantique de Skyanin. Cette méthode généralise au cas quantique et pour des systèmes avec un grand nombre de degrés de liberté la méthode de Hamilton-Jacobi en mécanique analytique. Le Hamiltonien est exprimé avec des opérateurs séparés, son spectre et ses états propres caractérisés par un système d'équations de Baxter résultant des structures algébriques de Yang-Baxter, caractéristiques de l'intégrabilité de ces modèles.Cette thèse a permis, pour les modèles de sine-Gordon (théorie des champs quantique) et de Potts chiral (modèle de physique statistique), le calcul des produits scalaires entre états propres du Hamiltonien, la résolution du problème inverse, i. e. l'expression des opérateurs du modèle en termes des variables séparées, ainsi que le calcul en termes de déterminants des facteurs de forme, i. e. des éléments de matrice des opérateurs locaux du modèle dans la base propre du Hamiltonien, ce qui constitue un pas important vers le calcul des fonctions de corrélation de ces modèles. / Form factors and correlation functions determine the measurable dynamic quantities that are associated with field theories and statistical physics models. In the case of 2-dimensional integrable models, one of the main challenges beyond spectrum properties and partition function is the exact computation of form factors and correlation functions.The aim of this thesis is to develop an approach in the framework of Sklyanin's separation of variables to address this problem. This framework generalizes to the quantum case and for systems with many degrees of freedom the Hamilton-Jacobi method from analytical mechanics. The Hamiltonian is expressed in terms of separated operators, its spectrum and eigenvectors are characterized by a system of Baxter equations. These Baxter equations are a consequence of Yang-Baxter relations that are characteristic of these models being integrable.The result of this thesis is, in the case of the sine-Gordon model (quantum field theory) and of the chiral Potts model (statistical physics model), the computation of scalar products of Hamiltonian eigenstates, the resolution of the inverse problem (expressing the model operators in terms of separated variables) and the computation in terms of determinant of form factors (the matrix elements of the model local operators in the Hamiltonian eigenbasis), which is an important step towards the computation of the correlation functions of these models.
8

Algèbre de Yang-Baxter dynamique et fonctions de corrélation du modèle SOS intégrable

Levy-Bencheton, Damien 22 October 2013 (has links) (PDF)
Un défi toujours actuel dans le domaine des systèmes intégrables quantiques est le calcul exact et explicite des fonctions de corrélation. Dans le cas de modèles simples tels que la chaîne de Heisenberg XXZ de spins 1/2, des progrès significatifs ont été réalisés ces dernières années. Les méthodes développées utilisent les symétries des modèles en volume infini (algèbre quantique affine) ou fini (algèbre de Yang-Baxter). L'objet de cette thèse est d'étendre le champ d'application de ce dernier type d'approche dans le cas où l'algèbre de Yang-Baxter sous-jacente est de type dynamique. C'est typiquement le cas du modèle de physique statistique solid-on-solid (SOS) qui décrit les interactions d'un paramètre de hauteur autour des faces d'un réseau bidimensionnel, avec des poids statistiques donnés par une matrice R elliptique solution de l'équation de Yang-Baxter dynamique.L'étude des fonctions de corrélation du modèle SOS est abordée dans le cadre de l'ansatz de Bethe algébrique et de la méthode de séparation des variables. Des représentations en termes de déterminants de fonctions usuelles sont obtenues par les deux méthodes pour les produits scalaires entre états et pour les facteurs de forme des opérateurs locaux en volume fini. Les formules obtenues dans le cadre de l'ansatz de Bethe algébrique sont ensuite utilisées pour représenter la fonction de corrélation à deux points sous la forme d'intégrales multiples, ainsi que pour le calcul de diverses quantités physiques à la limite thermodynamique, telles que les polarisations spontanées ou les probabilités de hauteurs locales. Ces dernières s'expriment sous forme d'intégrales multiples similaires à celles du modèle XXZ.
9

Superintégrabilité avec séparation de variables en coordonnées polaires et intégrales du mouvement d’ordre supérieur à deux

Tremblay, Frédérick 10 1900 (has links)
Dans cette thèse, nous proposons de nouveaux résultats de systèmes superintégrables séparables en coordonnées polaires. Dans un premier temps, nous présentons une classification complète de tous les systèmes superintégrables séparables en coordonnées polaires qui admettent une intégrale du mouvement d'ordre trois. Des potentiels s'exprimant en terme de la sixième transcendante de Painlevé et de la fonction elliptique de Weierstrass sont présentés. Ensuite, nous introduisons une famille infinie de systèmes classiques et quantiques intégrables et exactement résolubles en coordonnées polaires. Cette famille s'exprime en terme d'un paramètre k. Le spectre d'énergie et les fonctions d'onde des systèmes quantiques sont présentés. Une conjecture postulant la superintégrabilité de ces systèmes est formulée et est vérifiée pour k=1,2,3,4. L'ordre des intégrales du mouvement proposées est 2k où k ∈ ℕ. La structure algébrique de la famille de systèmes quantiques est formulée en terme d'une algèbre cachée où le nombre de générateurs dépend du paramètre k. Une généralisation quasi-exactement résoluble et intégrable de la famille de potentiels est proposée. Finalement, les trajectoires classiques de la famille de systèmes sont calculées pour tous les cas rationnels k ∈ ℚ. Celles-ci s'expriment en terme des polynômes de Chebyshev. Les courbes associées aux trajectoires sont présentées pour les premiers cas k=1, 2, 3, 4, 1/2, 1/3 et 3/2 et les trajectoires bornées sont fermées et périodiques dans l'espace des phases. Ainsi, les résultats obtenus viennent renforcer la possible véracité de la conjecture. / In this thesis, we propose new superintegrable systems separable in polar coordinates. After the introduction, in chapter 2, we present a complete classification of all separable systems in polar coordinates which admit a third order integral in addtion to the second order one responsible for the separation of variables. New potentials expressed in terms of the sixth Painlevé transcendent and of the Weierstrass elliptic function are obtained. In chapter 3 we introduce an infinite family of integrable and exactly sovable classical and quantum systems separable in polar coordinates. This family is described in term of a parameter k. The energy spectrum and the wave functions of the quantum systems are obtained. A conjecture postulating the superintegrability of these systems is formulated and is verified for the first cases k = 1,2,3,4. The order of the integrals is 2k where k ∈ ℕ. The algebraic structure of the family of quantum systems is formulated in term of a hidden algebra where the number of generators depends on the parameter k. A quasi-exactly solvable and integrable generalization of the family of potentials is proposed. Finally in chapter 4, the classical trajectories of the family of systems are calculated for all the rational cases k ∈ ℚ. Those are expressed in term of Chebyshev polynomials. We plot the curves associated with the trajectories for k=1,2,3,4,1/2, 1/3 and 3/2. The bounded curves are closed and periodic in the two dimensional phase space. Those results obtained reinforce the possible veracity of the conjecture.
10

Les systèmes super intégrables d’ordre trois séparables en coordonnées paraboliques

Popper, Iuliana Adriana 04 1900 (has links)
Ce mémoire est une poursuite de l’étude de la superintégrabilité classique et quantique dans un espace euclidien de dimension deux avec une intégrale du mouvement d’ordre trois. Il est constitué d’un article. Puisque les classifications de tous les Hamiltoniens séparables en coordonnées cartésiennes et polaires sont déjà complétées, nous apportons à ce tableau l’étude de ces systèmes séparables en coordonnées paraboliques. Premièrement, nous dérivons les équations déterminantes d’un système en coordonnées paraboliques et ensuite nous résolvons les équations obtenues afin de trouver les intégrales d’ordre trois pour un potentiel qui permet la séparation en coordonnées paraboliques. Finalement, nous démontrons que toutes les intégrales d’ordre trois pour les potentiels séparables en coordonnées paraboliques dans l’espace euclidien de dimension deux sont réductibles. Dans la conclusion de l’article nous analysons les différences entre les potentiels séparables en coordonnées cartésiennes et polaires d’un côté et en coordonnées paraboliques d’une autre côté. Mots clés: intégrabilité, superintégrabilité, mécanique classique, mécanique quantique, Hamiltonien, séparation de variable, commutation. / This thesis is a contribution to the study of classical and quantum superintegrability in a two-dimensional Euclidean space involving a third order integral of motion. It consists of an article. Because the classifications of all separable hamiltonians into Cartesian and polar coordinates are already complete, we bring to this picture the study of those systems in parabolic coordinates. First, we derive the determinating equations of a system into parabolic coordinates, after which we solve the obtained equations in order to find integrals of order three for potentials, which allow the separations of variables into the parabolic coordinates. Finally, we prove that all the third order integrals for separable potentials in parabolic coordinates in the Euclidean space of dimension two are reducible. In the conclusion of this article, we analyze the differences between the separable potentials in Cartesian and polar coordinates and the separable potentials in parabolic coordinates. Keywords: integrability, superintegrability, classical mechanics, quantum mechanics, Hamiltonian, separation of variables, commutation.

Page generated in 0.1497 seconds