Spelling suggestions: "subject:"kuantum integrable systems"" "subject:"auantum integrable systems""
1 |
QCD at High Energies and Yangian SymmetryKirschner, Roland 06 April 2023 (has links)
Yangian symmetric correlators provide a tool to investigate integrability features of
QCD at high energies. We discuss the kernel of the equation of perturbative Regge asymptotics,
the kernels of the evolution equation of parton distributions, Born scattering amplitudes and
coupling renormalization.
|
2 |
Séparation des variables et facteurs de forme des modèles intégrables quantiques / Separation of variables and form factors of quantum integrable modelsGrosjean, Nicolas 25 June 2013 (has links)
Les facteurs de forme et les fonctions de corrélation déterminent les quantités dynamiques mesurables associées aux modèles de théorie des champs et de mécanique statistique. Dans le cas de modèles intégrables en dimension 2, au-delà des propriétés du spectre ou de la fonction de partition, un des grands défis actuels concerne le calcul exact des facteurs de forme et des fonctions de corrélation.Le but de cette thèse est de développer une approche permettant de résoudre ce problème dans le cadre de la méthode de séparation des variables quantique de Skyanin. Cette méthode généralise au cas quantique et pour des systèmes avec un grand nombre de degrés de liberté la méthode de Hamilton-Jacobi en mécanique analytique. Le Hamiltonien est exprimé avec des opérateurs séparés, son spectre et ses états propres caractérisés par un système d'équations de Baxter résultant des structures algébriques de Yang-Baxter, caractéristiques de l'intégrabilité de ces modèles.Cette thèse a permis, pour les modèles de sine-Gordon (théorie des champs quantique) et de Potts chiral (modèle de physique statistique), le calcul des produits scalaires entre états propres du Hamiltonien, la résolution du problème inverse, i. e. l'expression des opérateurs du modèle en termes des variables séparées, ainsi que le calcul en termes de déterminants des facteurs de forme, i. e. des éléments de matrice des opérateurs locaux du modèle dans la base propre du Hamiltonien, ce qui constitue un pas important vers le calcul des fonctions de corrélation de ces modèles. / Form factors and correlation functions determine the measurable dynamic quantities that are associated with field theories and statistical physics models. In the case of 2-dimensional integrable models, one of the main challenges beyond spectrum properties and partition function is the exact computation of form factors and correlation functions.The aim of this thesis is to develop an approach in the framework of Sklyanin's separation of variables to address this problem. This framework generalizes to the quantum case and for systems with many degrees of freedom the Hamilton-Jacobi method from analytical mechanics. The Hamiltonian is expressed in terms of separated operators, its spectrum and eigenvectors are characterized by a system of Baxter equations. These Baxter equations are a consequence of Yang-Baxter relations that are characteristic of these models being integrable.The result of this thesis is, in the case of the sine-Gordon model (quantum field theory) and of the chiral Potts model (statistical physics model), the computation of scalar products of Hamiltonian eigenstates, the resolution of the inverse problem (expressing the model operators in terms of separated variables) and the computation in terms of determinant of form factors (the matrix elements of the model local operators in the Hamiltonian eigenbasis), which is an important step towards the computation of the correlation functions of these models.
|
3 |
Algèbre de Yang-Baxter dynamique et fonctions de corrélation du modèle SOS intégrable / Dynamical Yang-Baxter algebra and correlation functions of the integrable SOS modelLevy-Bencheton, Damien 22 October 2013 (has links)
Un défi toujours actuel dans le domaine des systèmes intégrables quantiques est le calcul exact et explicite des fonctions de corrélation. Dans le cas de modèles simples tels que la chaîne de Heisenberg XXZ de spins 1/2, des progrès significatifs ont été réalisés ces dernières années. Les méthodes développées utilisent les symétries des modèles en volume infini (algèbre quantique affine) ou fini (algèbre de Yang-Baxter). L'objet de cette thèse est d'étendre le champ d'application de ce dernier type d'approche dans le cas où l'algèbre de Yang-Baxter sous-jacente est de type dynamique. C'est typiquement le cas du modèle de physique statistique solid-on-solid (SOS) qui décrit les interactions d'un paramètre de hauteur autour des faces d'un réseau bidimensionnel, avec des poids statistiques donnés par une matrice R elliptique solution de l'équation de Yang-Baxter dynamique.L'étude des fonctions de corrélation du modèle SOS est abordée dans le cadre de l'ansatz de Bethe algébrique et de la méthode de séparation des variables. Des représentations en termes de déterminants de fonctions usuelles sont obtenues par les deux méthodes pour les produits scalaires entre états et pour les facteurs de forme des opérateurs locaux en volume fini. Les formules obtenues dans le cadre de l'ansatz de Bethe algébrique sont ensuite utilisées pour représenter la fonction de corrélation à deux points sous la forme d'intégrales multiples, ainsi que pour le calcul de diverses quantités physiques à la limite thermodynamique, telles que les polarisations spontanées ou les probabilités de hauteurs locales. Ces dernières s'expriment sous forme d'intégrales multiples similaires à celles du modèle XXZ. / A current challenge in the field of quantum integrable systems is the exact and explicit computation of correlation functions. In simple models such as the XXZ spin 1/2 Heisenberg chain, some significant results have been obtained during the last years. The developed methods essentially use the symmetries of the models in infinite volume (quantum affine algebra) or finite volume (Yang-Baxter algebra). The aim of this thesis is to generalize the scope of the latter approaches to the case where the underlying Yang-Baxter algebra is of dynamical type. This is typically the case of the statistical mechanics solid-on-solid (SOS) model which describes the interactions of a height parameter around faces of a bidimensional lattice, and whose statistical weights are given by an elliptic R-matrix which is solution of the dynamical Yang-Baxter equation.The study of correlation functions of the SOS model is discussed in the framework of the algebraic Bethe ansatz and the separation of variables. Representations in terms of determinants of usual functions are obtained by these two methods for the scalar products of states and for form factors of local operators in finite volume. The obtained formula in the framework of the algebraic Bethe ansatz are then used to represent the two-point function as multiple integrals, and also to compute various physical quantities at the thermodynamic limit, such as the spontaneous polarizations or the local height probabilities. The latter can be expressed in terms of multiple integrals of contour, which are really similar to the ones obtained in the XXZ model.
|
4 |
Algèbres affines quantiques et algèbres reliées : R-matrices, inflations et système intégrablesPinet, Théo 09 1900 (has links)
Cotutelle de thèse avec Université Paris Cité / Cette thèse s'inscrit dans le vaste domaine de la théorie des représentations des groupes quantiques et des algèbres y étant reliées. Elle est divisée en trois sous-projets, tous motivés par des problèmes provenant de la théorie des systèmes intégrables quantiques et de l'étude des algèbres amassées. La thèse a donné lieu à deux articles publiés et à une prépublication. Le premier sous-projet s’intéresse à la structure algébrique d’une famille remarquable de systèmes physiques: les chaînes de spins XXZ périodiques. Le résultat central du sous-projet est la description explicite et totale de la structure de Jordan–Hölder de ces chaînes de spins pour une action naturelle des algèbres de Temperley–Lieb affines. D’autres résultats issus de ce sous-projet contiennent : une description explicite de la structure des modules projectifs de dimension finie du groupe quantique Uqsl2 (en q racine de l’unité) et une généralisation partielle de la célèbre dualité de Schur–Weyl quantique. Le second sous-projet s'intéresse à la construction de R-matrices pour la catégorie O de représentations de la sous-algèbre de Borel d'une algèbre de lacets quantique arbitraire. Les résultats principaux du projet sont la définition d'un foncteur F inversible et exact liant la catégorie O de l'algèbre de Borel Uq(b) à celle de Uq'(b) (pour q'=1/q) avec la preuve que ce foncteur F intervertit les sous-catégories O^± de Hernandez–Leclerc (tout en étant compatible avec les produits tensoriels et la simplicité des modules). Ces résultats, qui répondent à une question de Hernandez–Leclerc, permettent de construire des R-matrices pour la sous-catégorie O^+ via des R-matrices ``duales" (définies récemment par Hernandez pour O^-) et peuvent servir à déduire de nouvelles relations pour l'anneau de Grothendieck de la catégorie O. Enfin, le dernier sous-projet introduit la notion d'inflations pour les représentations des algèbres affines quantiques décalées. Ces inflations, qui sont des préimages particulières pour certains foncteurs de restriction canoniques issus des inclusions de diagrammes de Dynkin, simplifient l'étude des modules sur les algèbres affines quantiques décalées et ont, via ce fait, plusieurs applications en théorie des systèmes intégrables. Le résultat principal de ce dernier sous-projet est un théorème d'existence pour les inflations d'objets simples de la catégorie O^sh en type A–B–G (ou en tout type pour les simples de dimension finie de cette catégorie). / This thesis falls within the study of the representation theory of quantum groups and of related algebras. It is divided into three subprojects, all motivated by problems arising from the theory of quantum integrable systems and the study of cluster algebras. The thesis has resulted in two published articles and one prepublication. The first subproject focuses on the algebraic structure of a remarkable family of physical systems: the periodic XXZ spin chains. The principal result of the subproject is the explicit and complete description of the Jordan–Hölder structure of these chains for a natural action of the affine Temperley–Lieb algebras. Other results from this subproject include an explicit description of the structure of finite-dimensional projective modules for the quantum group Uqsl2 (at q a root of unity) and a partial generalization of the quantum Schur-Weyl duality. The second subproject tackles the problem of constructing R-matrices for the category O associated to the Borel subalgebra of an arbitrary quantum loop algebra. The main results of the subproject are the definition of an exact invertible functor F linking the category O of the Borel algebra Uq(b) to that of Uq'(b) (for q'=1/q) with the proof that this functor interchanges the subcategories O^± of Hernandez–Leclerc (while being also compatible with tensor products and irreducibility). These results, which answer a question of Hernandez–Leclerc, enable the construction of R-matrices for the subcategory O^+ via ``dual'' R-matrices (in O^-) and allow the deduction of new relations for the Grothendieck ring of the category O. At last, the third subproject introduces the concept of inflations for representations of shifted quantum affine algebras. These inflations, which are special preimages for canonical restriction functors coming from Dynkin diagrams inclusions, simplify the study of modules over shifted quantum affine algebras and have, by this fact, many applications in the theory of integrable systems. The central result of this final subproject is an existence theorem for inflations of simple modules of the category O^sh in type A–B–G (or in any type for finite-dimensional simple modules of this category).
|
Page generated in 0.075 seconds