Spelling suggestions: "subject:"paleogeology"" "subject:"paleogeologic""
1 |
Dynamic stratigraphy and sediment partitioning of high-supply fluvial succession in Maastrichtian source-to-sink systemNed, Allison Marie 30 October 2013 (has links)
The sediment budget and paleogeography was reconstructed for the Maastrichtian fluvial to coastal plain Lance Formation (>200m thick) that developed coevally with the shoreline/shelf Fox Hills Sandstone (>200m thick) and deep-water Lewis Shale (>750m thick) in a complete source-to-sink system in the Washakie and Great Divide Basins of south central Wyoming. The system initiated during the final Western Interior Seaway (WIS) transgression and the onset of the Laramide Orogeny rapid subsidence (>2km in 1.9 My) that largely outpaced sediment flux into the basin so the system became and remained a deep-water (>500m water depth) basin beyond the Lance-Fox Hills shelf prism. The active tectonic setting and rapid subsidence caused the Lance fluvial and coastal plain deposits to aggrade and accumulate behind the generally rising shoreline trajectory of the Fox Hills Sandstone. The depositional succession is subdivided into 15 clinothem units and the Lance Formation is best exposed in outcrops in clinoforms 10, 11, and 12. Subsurface analysis correlates key stratigraphic surfaces across the basin to define the sediment budget and clinoform architecture. Field analysis along clinoform 12 on the east side of the basin details facies and paleohydraulic dimensions. Sediment partitioning shows the regressive and transgressive systems tracts (RST and TST) form complementary wedges such that the RST thickens basinward and the TST thins basinward, reflecting the preferential storage of sediment. Channels measured in the field and subsurface datasets are similar in thickness (2m-16m) and suggest braided channel morphology with channel belts from 6.2-8.4km. N/NE paleocurrent trends departing from the subsurface dataset and previous studies of the system provide evidence of possible tidal influences in a developed shoreline embayment or an east to west supply from the basement-cored Rawlins and Sierra Madre Uplifts in the east. The fluvial Lance Formation paleogeography associated with the RST and TST is primarily driven both by modest, Late Cretaceous relative sea level changes and sediment supply linked to the tectonic setting and climate. / text
|
2 |
Geologic Factors Affecting Hydrocarbon Occurrence in Paleovalleys of the Mississippian-Pennsylvanian Unconformity in the Illinois BasinLondon, Jeremy Taylor 01 May 2014 (has links)
Paleovalleys associated with the Mississippian-Pennsylvanian unconformity have been identified as potential targets for hydrocarbon exploration in the Illinois Basin. Though there is little literature addressing the geologic factors controlling hydrocarbon accumulation in sub-Pennsylvanian paleovalleys basin-wide, much work has been done to identify the Mississippian-Pennsylvanian unconformity, characterize the Chesterian and basal Pennsylvanian lithology, map the sub-Pennsylvanian paleogeology and delineate the pre-Pennsylvanian paleovalleys in the Illinois Basin. This study uses Geographic Information Systems (GIS) to determine the geologic factors controlling the distribution of hydrocarbon-bearing sub-Pennsylvanian paleovalley fill in the Illinois Basin. A methodology was developed to identify densely-drilled areas without associated petroleum occurrence in basal Pennsylvanian paleovalley fill. Kernel density estimation was used to approximate drilling activity throughout the basin and identify “hotspots” of high well density. Pennsylvanian oil and gas fields were compared to the hotspots to identify which areas were most likely unrelated to Pennsylvanian production. Those hotspots were then compared to areas with known hydrocarbon accumulations in sub-Pennsylvanian paleovalleys to determine what varies geologically amongst these locations. Geologic differences provided insight regarding the spatial distribution of hydrocarbon-bearing sub-Pennsylvanian paleovalleys in the Illinois Basin. It was found that the distribution of hydrocarbon-bearing paleovalleys in the Illinois Basin follows structural features and faults. In the structurally dominated portions of the Illinois Basin, especially in eastern Illinois along the La Salle Anticlinal Belt, hydrocarbons migrate into paleovalleys from underlying hydrocarbon-rich sub- Pennsylvanian paleogeology. Along the fault-dominated areas, such as the Wabash, Rough Creek and Pennyrile Fault Zones, migration occurs upwards along faults from deeper sources. Cross sections were made to gain a better understanding of the paleovalley reservoir and to assess the utility of using all the data collected in this study to locate paleovalley reservoirs. The Main Consolidated Field in Crawford County, Illinois, was chosen as the best site for subsurface mapping due to its high well density, associated Pennsylvanian production, and locally incised productive Chesterian strata. Four cross sections revealed a complex paleovalley reservoir with many potential pay zones. The methodology used to locate this paleovalley reservoir can be applied to other potential sites within the Illinois Basin and to other basins as well.
|
3 |
Oceanic cycling of rare earth elements and the application of Nd isotopes to assess changes in Mesozoic ocean circulationZheng, Xinyuan January 2016 (has links)
Rare earth elements (REEs) and their isotopes (such as Nd isotopes) can be potentially used to trace a wide range of oceanic processes in both modern and ancient oceans, but their successful application as tracers requires a comprehensive understanding of REE cycling in the modern ocean. Previous studies of REEs in seawater were largely constrained by analytical difficulties in generating accurate and precise REE data from seawater, which typically contain REE concentrations at a sub-ppt to ppt level. A new, and relatively simple, analytical method for precise and accurate determination of all dissolved REE concentrations in reasonably small (∼100 ml) seawater samples is presented in this thesis. With the application of the new method, this thesis reports the first full-depth, zonal ocean section of all dissolved REE concentrations, collected during the CoFeMUG cruise along ∼12°S in the South Atlantic. The section approach of this study places the distribution of dissolved REE concentrations in a well-constrained hydrographic context, allowing the first quantitative assessment (by an inverse model) of the relative importance of hydrographic controls resulting from advection/mixing of ocean circulation, together with non-conservative controls resulting from local particle scavenging and remineralization, in controlling the distribution of dissolved REEs in this region. A noteworthy decoupling of Ce and Mn with respect to their cycling in the water column was also observed in this study. The application of Nd isotopes as a tracer to reconstruct changes in ocean circulation in the NW European chalk shelf sea during rapid climatic events, including the mid-Cenomanian Event and oceanic anoxic event 2 (OAE 2), suggests a tight coupling between ocean circulation and transient climatic cooling during the general warm Late Cretaceous. An advected volcanic signal during OAE 2 was registered in the seawater Nd-isotope record from the English Chalk, probably suggesting a period of enhanced ocean ventilation/mixing at this time.
|
Page generated in 0.0314 seconds