• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Ekonomiskt utfall av bränsle och bränsleblandningar : En modell för framtagning av ång- och bränslekostnader

Olsson, Anton January 2018 (has links)
Uppdragets huvudsakliga ändamål har varit att utveckla en modell för SCA Ortvikens pappersbruk, för beräkning av ångans momentankostnad. I rapporten bildas en uppfattning om hur Ortviken producerar papper och visar en överblick av fabrikens ångcentral, samt hur okända bränsleflöden kan tas fram. Därefter förklaras modellens konstruktion vilket inkluderar den information som krävs och hur den hämtas, skapade regler och antagande för att göra modellen genomförbar, samt de beräkningssteg som utförs. För att kunna skapa modellen har studier om ångnätet utförts på plats och information hämtats ur litteratur. Modellens slutprodukt är gjord i Microsoft Excel och använder ett tilläggsprogram PI för att kunna hämta information från fabrikens databas. Ångans eftersökta mängdkostnad redovisas i Excel-dokumentet, i rapporten visas exempel från slutprodukten och redogörs med en förklarande text. Slutprodukten innehar inte bara momentana beräkningar utan erbjuder även förmågan att se över dåtida ångkostnader.
2

Energisystemanalys vid Tekniska verkens kraftvärmeverk

Johnsson, Simon January 2018 (has links)
Linköpings kraftvärmeverk (KV1) som drivs av Tekniska verken har under en längre tid haft en upplevd obalans, dels mellan mängden tillfört bränsle och mängden producerad ånga, dels mellan mängden producerad ånga och mängden producerad el samt nyttig värme i fjärrvärmenätet. Detta arbete syftar till att hjälpa Tekniska verken att utreda den upplevda obalansen mellan mängden tillfört bränsle och mängden producerad ånga. Utredningen gjordes genom att studera standarder samt tidigare arbeten inom området och ta fram en metod för att beräkna den direkta och indirekta pannverkningsgraden. Innan beräkningen av den direkta och indirekta pannverkningsgraden inleddes verifierades trovärdigheten hos de stationära flödesmätarna i anläggningen. Detta gjordes genom att mäta ett antal vattenflöden på KV1 med en handhållen ultraljudsflödesmätare och sedan jämföra dessa flöden mot de värden som registrerades i styrsystemet Delta V. Då verifikationen av de stationära flödesmätarna hade genomförts inleddes beräkningen av den indirekta verkningsgraden genom att samla in ask- och bränsleprover för panna 1 och 3. I samband med dessa provinsamlingar mättes även luftflödeshastigheten och temperaturen vid pannornas yta. De insamlade proverna skickades iväg för labbanalys. Den data som insamlades applicerades i beräkningarna av oförbränt bränsle i askan, oförbränd rest i gasfas, rökgasförluster samt konvektions- och strålningsförluster, vilka var variabler som var nödvändiga för att erhålla den indirekta verkningsgraden. Den indirekta verkningsgraden beräknades till 92,24 % för panna 1 och 95,85 % för panna 3. Dessa verkningsgrader låg i linje dels med vad som kunde förväntas av pannorna på KV1 (85-90 % för panna 1, samt över 90 % för panna 3), dels med tidigare arbeten som beräknat den indirekta verkningsgraden i kraftvärmeverk. Utöver pannverkningsgraden erhölls även en ångverkningsgrad genom den indirekta verkningsgraden. Denna beräknades till 90,66 % för panna 1 samt 88,79 för panna 3. För att få perspektiv från en mindre komplex metod beräknades även ångverkningsgraden genom den direkta verkningsgraden (90,22 % för panna 1 samt 97,78 % för panna 3). Dessa resultat antydde att KV1 hade högre pann- och ångverkningsgrad än vad Tekniska verkens egna beräkningar påvisade. Tre orsaker lyftes fram som potentiella skäl till de otillfredsställande pann- och ångverkningsgraderna som Tekniska verken erhöll med sina beräkningar. De orsakerna var följande: • Producerad ånga som ej går till turbin inkluderas ej i det ångflöde som ligger till grund för beräkningen av ångeffekten. • Energiinnehållet i biobränslet för panna 3 förändras mellan den tidpunkt då bränslet anländer till lagringsplatsen och den tidpunkt då bränslet matas in i pannan, på grund av förmultning (berör endast panna 3). • Problem med invägningen av bränslet. Antingen problem med fordonsvågen vid KV1 (berör både panna 1 och 3) eller att bränslevikten från invägningen på Gärstadområdet används vid beräkningen av den tillförda bränsleenergin till pannan (berör mest panna 3). / The CHP-plant in Linköping (KV1) run by Tekniska verken has experienced an imbalance partly between the amount of fuel added to the boiler and the amount of produced steam, partly between the amount of produced steam and the amount of useful steam in the district heating grid. This thesis aimed to help Tekniska verken investigate the imbalance between the amount of added fuel and the amount of produced steam. The investigation was done by developing a method for calculating the direct and indirect efficiency through studying standards and old theses within the field. Initially there were no clear theory behind what caused the imbalance from Tekniska verken’s side. Before the calculation of the direct and indirect efficiency was initiated, the credibility of the stationary flowmeters was verified. This was done by measuring several waterflows at KV1 with a handheld ultrasonic flowmeter and comparing the measured flows with the flows registered in the stationary flow meters. When the verification of the stationary flow meters was done, the calculations of the indirect efficiency was initiated by collecting ash- and fuel samples for boiler 1 and 3. In connection with the collection of those samples, the air flow rate and temperature at the boiler surface was also measured. The ash- and fuel samples was sent for lab analysis. The collected data was applied in the calculation of unburnt fuel in the ashes, unburnt residual in gas phase, flue gas losses and convection- and radiation losses, which were variables that were necessary for calculating the indirect efficiency. The indirect efficiency was calculated at 92,24 % for boiler 1 and 95,85 % for boiler 3. Those efficiencies were both in line with the boilers expected efficiencies (85-90 % for boiler 1 and over 90 % for boiler 3.) and the efficiencies received in previous theses that had calculated the indirect efficiency in CHP-plants. Except the boiler efficiency, the steam efficiency was also received through the indirect efficiency. The steam efficiency received through indirect efficiency was 90,66 for boiler 1 and 88,79 % for boiler 3. To get perspective from a less complex method, the steam efficiency was also calculated with the direct method (90,22 % for boiler 1 and 97,78 % for boiler 3). Those results indicated that KV1 had higher boiler- and steam efficiencies than what Tekniska verken’s own calculation showed. Three reasons were raised as potential causes to the unsatisfying boiler- and steam efficiencies that Tekniska verken received with their own calculations. Those reasons were the following: • Produced steam that is not going to the turbine is excluded from the steam flow that the calculated steam effect is based on. • The energy content of the biofuel in boiler 3 is changing between point when the fuel is delivered to the storage and the point when it’s fed in to the boiler, due to decay. • Problem with the weigh-in of the fuel. The problem could be related both to the vechicle scale (affecting both boiler 1 and 3) or that the fuel weight from the weigh in at the Gärstad area is used in the calculation of the added fuel energy to the boiler (affecting mostly boiler 3).
3

Bestämning av pannverkningsgrad – Ålidhems Värmeverk : Jämförelse mellan direkt- och indirekt metod / Determination of boiler efficiency – Ålidhem heating plant : Comparison between the input-output method and the energy balance method

Söderlund, Martin January 2015 (has links)
På uppdrag från Umeå Energi AB ska två av deras rostereldade värmepannor (panna 6 och 7) undersökas med avseende på pannverkningsgraden. Umeå Energi genomför i dagsläget månadsvisa kontroller av pannverkningsgraden beräknade med den direkta metoden. Denna beräkningsmetod är dessvärre ganska otillförlitlig, vilket medför att en noggrannare undersökning av pannverkningsgraden krävs. Av denna anledning så beräknades pannverkningsgraden med den indirekta beräkningsmetoden, vilket resulterade i ett mer tillförlitligt resultat där även pannans förlustfaktorer bestämdes. Pannverkningsgraden beräknades och analyserades med hänsyn till de ingående förlustfaktorerna vid samma nyttiga effekt för båda pannorna. För att genomföra detta arbete så undersöktes först de rådande standarderna inom området, detta för att välja ut den mest lämpliga standarden för detta arbete beträffande kriterier och viktiga beräkningsfaktorer. De viktigaste provtagningarna och analyserna som dessa standarder berörde gällde bränsle, aska och rökgaser. För att genomföra alla provtagningar skapades ett provtagningsschema. Provtagningarna genomfördes på båda pannorna vid två olika provtagningstillfällen, därefter skickades proverna på analys och pannverkningsgraden kunde sedan beräknas.Resultatet som detta arbete resulterade i är att panna 6 har något högre pannverkningsgrad än panna 7, 89,3 respektive 82,8 %. Detta medför att förlustfaktorerna står för 10,7 samt 17,2 % för panna 6 respektive panna 7, där den överlägset största förlustfaktorn är rökgasförlusterna. Denna förlustfaktor beror till stor del på rökgasernas temperatur och fukthalt. Rökgasförlusterna uppgår till 9,5 samt 16,3 % på panna 6 respektive panna 7. Därefter i storleksordningen kommer askförlusterna för panna 6 (0,8 %) och värmeförlusterna för panna 7 (0,5 %). Både värmeförlusterna och askförlusterna för panna 6 respektive panna 7 uppgår till en förlustfaktor på 0,3 %. Den minsta förlustfaktorn är oförbränt i gasfas (CO) som ligger mellan 0–0,1 % för panna 6 och panna 7, detta tyder på låga halter av kolmonoxid och oförbränt i rökgaserna.De effektiviseringsförslag som detta arbete ledde fram till var att minska fukthalten och temperaturen på de utgående rökgaserna, detta genom att installera en rökgaskondenseringsanläggning som sänker rökgastemperaturen ytterligare och kondenserar ut mer fukt från rökgaserna. Detta realiseras genom att sänka kondensattemperaturen i rökgaskondenseringsanläggningen antingen genom lägre returledningstemperatur på fjärrvärmen som värmeväxlas mot kondensatet eller via en värmepump placerad mellan fjärrvärmereturen och kondensatet som arbetar med en lägre drifttemperatur än fjärrvärmen. Ett annat effektiviseringsförslag är att förbättra bränslehanteringen genom att torka bränslet innan de matas in i pannan. Slutligen skulle också en mer frekvent uppföljning av bränsleparametrar såsom värmevärde vara ett möjligt effektiviseringsförslag. Alla dessa förslag kräver dessvärre en ekonomisk och tekniskt utredning för att avgöra om dessa effektiviseringsförslag är ekonomiskt försvarbara samt tekniskt genomförbara. / On behalf of Umeå Energi AB, two of their grate fired heating boilers (boiler 6 and 7) was evaluated with respect to boiler efficiency. Currently these boiler efficiency calculations is carried out monthly by the input-output method. This calculation method is unfortunately rather unreliable, which means that a more exact examination of the boiler efficiency is required. For this reason, the boiler efficiency was calculated using the energy balance method, which gives more reliable results and also evaluates the boiler losses. Boiler efficiency was calculated and analysed with respect to the boiler losses at approximately the same useful effect for both the boilers.To perform this work the leading standards in the field were examined, which was done in order to evaluate the most appropriate standard with regard to criteria and important calculation factors. The most important samples and analyses that these standards was concerned with was fuel, ash and flue gas. To conduct all sampling, a sampling plan was created. All samplings was performed on both boilers at two sampling occasions, the samples were then sent for analysis and the boiler efficiency could then be calculated.The result from this work shows that boiler 6 has slightly higher boiler efficiency than boiler 7, 89.3 and 82.8% respectively. As a result, the boiler losses total up to 10.7 and 17.2% for boiler 6 and 7 respectively, where the flue gas losses constitutes the largest losses. The flue gas losses depends largely on the temperature of the flue gases and the moisture content. Flue gas losses sums up to 9.5 and 16.3% on boiler 6 and 7 respectively. The second largest boiler loss is ash losses on boiler 6 which sums up to 0.8% and heat losses on boiler 7 which sums up to 0.5%. The heat losses on boiler 6 and the ash losses on boiler 7 both sums up to a boiler loss of 0.3 %. The smallest loss factor is unburned in gas phase (CO) and is between 0–0.1% for boiler 6 and boiler 7, this suggests low levels of carbon monoxide and unburned in flue gases.The efficiency proposals this work resulted in was to reduce the moisture content and temperature of the outgoing flue gases, this by installing a flue gas condenser, which lowers the temperature further and condenses out more moisture from the flue gases. This is realized by reducing the flue gas condensate temperature either through lowering district heating return temperature which exchange heat with the flue gas condensate or through a heat pump that is placed between the district heating return and flue gas condensate which operates at a lower temperature than the district heating. Another efficiency proposals is to improve the fuel handling by drying the fuel before being fed into the furnace. Finally, also a more frequent follow up of the fuel parameters such as calorific value would be a possible efficiency proposal. All of these proposals require unfortunately economic and technical investigation to determine whether these efficiency proposals are economically viable and technically feasible.
4

Optimering Överhettarångsotning : Förstudie på Mälarenergi Block 6 för Heat managements systemlösning

Luukas, Alexander January 2022 (has links)
The EU waste hierarchy includes energy recovery facilities where waste is used as fuel in combined heat- and powerplants. When waste is incinerated can the thermal energy be used in for example, district heating networks and or electricity generation. The purpose of the degree project is to make a pre-study of Heat Management's system solution HISS, optimization of steam soot blowing at Mälarenergi's waste boiler. Waste is a heterogeneous fuel that typically contains a variety of substances such as alkali, chlorine and heavy metals that often contribute to fouling on heat transfer surfaces. These coatings reduce the efficiency of heat transferring surfaces such as superheaters. Cleaning by soot blowing using steam is done at regular intervals to maintain efficiency. Superheater cleaning on the Block 6 is done by retractable rotating soot blowers equipped with a nozzle from where steam is sprayed out at pressure of 25 bar. The blowers are inserted one at a time in a sequence, which means that they wait for the previous blower before the next one can enter. Steam is taken from the main process, which leads to reduction in load on the turbine and causes wear during the sweeping process due to the high impact force. This can lead to erosive damage and thinning of the material on the tubes, thus shortening the lifespan of the superheaters. The optimisation adjusts the soot sequence so that full steam pressure is used only in one direction of travel of the lance, this allows an overlapping soot sequence to be used and thus halves the time required for sooting. Analysis of shorter sooting time and reduced steam consumption based on production data and case studies has led to the following results. The energy consumption of the auxiliary power is reduced by 14.25 MWh per sweeping sequence and 7 115.5 MWh annually. The turbine can produce 2.51 MWh more electricity per sweeping as the time it runs at reduced load is reduced, totalling 1 254.39 MWh in one year. 24.03 tonnes of steam are saved per sweeping and 12 003 tonnes in one year. Payback time for the optimisation is 1.01 years based on an average spot price from Mälarenergi's budgeting from last year. Considering current electricity prices could the payback time be further reduced. The conclusion from the pre-study is that the optimisation as the investment is economically viable and has other positive benefits such as: steadier steam flow and reduced pressure surges. Wear and tear on superheaters are reduced as they are only sprayed with high pressure once instead of twice per sweeping sequence. / I EU:s avfallshierarki ingår energiåtervinningsanläggningar där avfall används som bränsle i förbränningsanläggningar. Vid förbränning utav avfall så kan den utvunna termiska energin användas exempelvis i fjärrvärmenät och- eller generering utav el. Examensarbetets syfte är att göra en förstudie på Heat managements systemlösning HISS, optimering utav ångsotning på Block 6 som är Mälarenergis avfallspanna. Avfall är ett heterogent bränsle som typiskt innehåller en mängd olika ämnen som alkali, klor och tungmetaller som ofta bidrar till att beläggningar bildas på värmeöverförningsytor. Dessa beläggningar försämrar ytors värmeöverförningsverkningsgrad på till exempel överhettare. Rengöring i form av ångsotning görs i jämna intervall för att hålla verkningsgraden uppe. Sotning av överhettare på Block 6 skes av en utdragbar, roterande sotlans utrustad med en dysa där ånga sprutas ut med 25 bars tryck. Lansarna körs in en åt gången i en sekvens vilket innebär att dem väntar på föregående lans innan nästa kan köras. Ångan som används tas från huvudprocessen vilket medför reducerad last på turbinen och dessutom uppstår slitage vid sotningen ty den höga anslagskraften. Detta kan leda till erosiva skador och förtunning utav godset på tuberna och således förkortas livslängden på överhettarna. Optimeringen justerar sot sekvensen så att fullt ångtryck används bara i ena färdriktningen av lansen, detta möjliggör att en överlappande sotsekvens kan användas och på så vis halveras tidsåtgången för sotningen. Analysen utav kortare sottidsåtgång samt minskad ångförbrukning baserat på produktionsdata hämtad från styrsystemet 800xA samt fallstudier har mynnat ut i följande resultat. Hjälpkraftens energianvändning minskas med 14,25 MWh per sotningssekvens och årligen 7 115,5 MWh. Turbinen kan producera 2,51 MWh mer el vid varje sotning då tiden som den körs med reducerad last blir kortare, totalt på ett år blir det 1 254,39 MWh. Vid varje sotning sparas 24,03 ton ånga och på ett år 12 003 ton. Återbetalningstiden för optimeringen blir 1,01 år baserat på ett medelspotpris från Mälarenergis budgetering från förra året. Med hänsyn till dagens elpriser förkortas återbetalningstiden ytterligare.   Förstudien rekommenderar optimeringen då dels är investeringen lönsam rent ekonomiskt, dels medför den andra positiva fördelar. Optimeringen med överlappande sotning skapar ett jämnare ångflöde, det reducerar tryckstötar som är skadliga. Slitage på överhettartuber minskas då dem bara besprutas med högt tryck en gång i stället för två gånger per sotningssekvens. Behovsstyrd sotning skulle kunna implementeras upp till 3 gånger per dygn utan att det skulle kosta mer mot dagsläget där man stora 1,5 gånger per dygn.

Page generated in 0.1128 seconds