• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 36
  • 15
  • 6
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 86
  • 86
  • 25
  • 18
  • 16
  • 15
  • 15
  • 13
  • 12
  • 12
  • 11
  • 11
  • 10
  • 10
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Assessing test Reliability : Comparing Two Versions of Reading Comprehension Testin the TOEFL test

ZHANG, HENG January 2010 (has links)
This paper analyzes the two test forms used by TOEFL: IBT and PBT. The analysiswill focus on the reading comprehension section, its design features, content, andscoring results. The aim is to assess the reliability of the two test forms as well as toidentify factors influencing candidate performance in the reading comprehension test.Three factors are identified: test setting, test difficulty and scoring methods and results.The latter two will be focused on because test difficulty consistency directly decides thetest result consistency. And as the goal of the candidate is to achieve as high a score aspossible, and success is measured in terms of numbers, score reliability is a primaryconcern for both candidate and examining body alike.
22

Construção e aplicação de dispositivos analíticos 2D e 3D à base de papel com detecção eletroquímica / Construction and application of 2D and 3D electrochemical paper-based analytical devices

Santhiago, Murilo, 1984- 24 August 2018 (has links)
Orientador: Lauro Tatsuo Kubota / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Quimica / Made available in DSpace on 2018-08-24T12:03:31Z (GMT). No. of bitstreams: 1 Santhiago_Murilo_D.pdf: 3375339 bytes, checksum: 5d945dd23cfef732a3e3d083685bedc0 (MD5) Previous issue date: 2014 / Resumo: Neste trabalho descreve-se a construção e aplicação de dispositivos analíticos 2D e 3D à base de papel com detecção eletroquímica (ePAD). Os dispositivos foram construídos empregando o método de impressão com cera e diferentes tipos de papéis. Eletrodos de ouro foram utilizados juntamente com o conceito da separação cromatográfica em dispositivos microfluídicos. No canal microfluídico à base de papel foi possível realizar a separação de ácido ascórbico e dopamina em 14 minutos. A necessidade por processos de fabricação mais simples e de baixo custo nos motivou a estudar eletrodos de carbono em ePADs. Assim, eletrodos de grafite de lapiseira foram selecionados visando o desenvolvimento de um biossensor para glicose. O biossensor apresentou uma excelente resposta eletroquímica e um tempo de análise de 4 minutos. O mesmo eletrodo de grafite foi acoplado com um sistema de informação para determinação de p-nitrofenol. Assim, foi possível detectar 1,0 mmol L de p-nitrofenol em amostras de água e analisar/interpretar os resultados empregando um celular. Por fim, a necessidade por sistemas eletroquímicos com menores limites de detecção nos impulsionou a fabricar microeletrodos de pasta de carbono. Os microeletrodos foram fabricados em folhas de transparência e acoplados no papel empregando uma configuração do tipo sanduíche. Os dispositivos foram caracterizados eletroquimicamente na presença de cisteína e apresentaram uma constante cinética de 10 L mol s. Um limite de detecção de 4,8 mmol L para cisteína foi obtido empregando um arranjo de microeletrodos. Por fim, os microeletrodos de pasta de carbono foram utilizados para a construção de um biossensor visando a determinação de metil paration. O ePAD foi construído de modo a acomodar o substrato (acetiltiocolina) e a enzima (acetilcolinesterase) no mesmo dispositivo / Abstract: This thesis describes the construction and application of 2D and 3D electrochemical paper-based analytical devices (ePADs). The devices were constructed using the wax printing method and different types of papers. Gold electrodes were employed along with the concept of chromatographic separation in microfluidic devices. By using the paper-based microfluidic channel it was possible to perform the separation of ascorbic acid and dopamine in 14 minutes. The need for simpler and low cost manufacturing processes motivated us to study carbon electrodes in ePADs. Thus, pencil graphite electrodes were selected for the development of a biosensor for glucose. The biosensor exhibited excellent electrochemical response and analysis time of 4 minutes. The same graphite electrode was coupled to an information system for the determination of p-nitrophenol. Thus, it was possible to detect 1.0 mmol L of p-nitrophenol in water samples and analyze/interpret the results using a smartphone. Finally, the need for electrochemical systems with lower limits of detection made us to search for carbon paste microelectrodes. The microelectrodes were fabricated on transparency sheets and coupled on paper using a sandwich-type configuration. The devices were characterized electrochemically in the presence of cysteine and had a rate constant of 10 L mol s. A detection limit of 4.8 mmol L for cysteine was obtained using an array of microelectrodes. By last, carbon paste microelectrodes were used to construct a biosensor in order to determine methyl parathion. The ePAD was constructed to accommodate the substrate (acetylthiocholine ) and enzyme ( acetylcholinesterase ) in the same device / Doutorado / Quimica Analitica / Doutor em Ciências
23

Inkjet Printing of Paper-Based Wideband and High Gain Antennas

Cook, Benjamin 07 December 2011 (has links)
This thesis represents a major contribution to wideband and high gain inkjet-printed antennas on paper. This work includes the complete characterization of the inkjet printing process for passive microwave devices on paper substrate as well as several ultra-wideband and high gain antenna designs. The characterization work includes the electrical characterization of the permittivity and loss tangent for paper substrate through 10 GHz, ink conductivity data for variable sintering conditions, and minimum feature sizes obtainable by today’s current inkjet processes for metallic nanoparticles. For the first time ever, inkjet-printed antennas are demonstrated that operate over the entire UWB band and demonstrate gains up to 8dB. This work also presents the first fractal-based inkjet-printed antennas with enhanced bandwidth and reduced production costs, and a novel slow wave log periodic dipole array which shows minimizations of 20% in width over conventional log periodic antennas.
24

Stabilization of Horseradish Peroxidase Using Epoxy Novolac Resins for Applications with Microfluidic Paper-Based Analytical Devices

Chaplan, Cory A. 01 June 2014 (has links)
Microfluidic paper-based analytical devices (microPADs) are an emerging platform for point-of-care diagnostic tests for use by untrained users with potential applications in healthcare, environmental monitoring, and food safety. These devices can be developed for a multitude of different tests, many of which employ enzymes as catalysts. Without specialized treatment, some enzymes tend to lose their activity when stored on microPADs within 48 hours, which is a major hurdle for taking these types of devices out of the laboratory and into the real world. This work focused on the development of simple methods for stabilizing enzymes by applying polymers to chromatography paper. The longterm stabilization was exlored and SU-8 of various concentrations was found to stabilize horseradish peroxidase for times in excess of two weeks. A variety of microPAD fabrications, enzyme dispensing methods, and substrate delivery techniques were explored.
25

Design, Development, Characterization, and Validation of A Paper-based Microchip Electrophoresis System

Hasan, Muhammad Noman 01 June 2020 (has links)
No description available.
26

Consumer preferences for graphic, structural, and information elements on recycled paper-based package : Gender, age, and education differences

Čabajová, Andrea, Košík, Jakub January 2022 (has links)
Objective: Nowadays, the increasing pressure pushes companies to behave more environmentally friendly. Indeed, packaging made from recycled fibres can represent an essential advantage for firms in the packaging industry if it is designed in a way that appeals to consumers. The purpose of this thesis is to examine the graphic, structural and informative packaging elements and their effect on consumers’ preferences. Methodology/approach: Purposefully modified packaging designs were sent to the respondents via an online questionnaire using convenience sampling. The research analyses Slovak consumers due to their below-average environmental performance index (EPI) within the Europe. Out of 529 questionnaires collected, 483 responses were further examined and analysed by the chi-square test in SPSS. Findings: Our findings suggest that typography, colour contrast, pattern, image, shape and recyclability claims influence the preference of Slovak consumers. On the other hand, consumers did not prefer a particular layout and certificate. Furthermore, gender and age played a substantial role in the chosen recycled paper-based package, while education did not affect consumers preference in Slovakia. Practical implications: This work provides more in-depth knowledge of specific consumer preferences of packaging elements across different demographic groups, representing a valuable framework for companies’ marketing strategies. Moreover, it can serve as an inspiration for graphic designers for more innovative sustainable packaging solutions. Originality/value: Drawing upon previous research, it is evident that specific solutions for recycled paper-based packaging are lacking. This research provides new knowledge about consumer preferences for individual packaging elements. Thus, it is not only a contribution to the businesses but also a contribution to more sustainable consumption in accordance with Agenda 2030 policies.
27

RNA-Based Computing Devices for Intracellular and Diagnostic Applications

January 2019 (has links)
abstract: The fundamental building blocks for constructing complex synthetic gene networks are effective biological parts with wide dynamic range, low crosstalk, and modularity. RNA-based components are promising sources of such parts since they can provide regulation at the level of transcription and translation and their predictable base pairing properties enable large libraries to be generated through in silico design. This dissertation studies two different approaches for initiating interactions between RNA molecules to implement RNA-based components that achieve translational regulation. First, single-stranded domains known as toeholds were employed for detection of the highly prevalent foodborne pathogen norovirus. Toehold switch riboregulators activated by trigger RNAs from the norovirus RNA genome are designed, validated, and coupled with paper-based cell-free transcription-translation systems. Integration of paper-based reactions with synbody enrichment and isothermal RNA amplification enables as few as 160 copies/mL of norovirus from clinical samples to be detected in reactions that do not require sophisticated equipment and can be read directly by eye. Second, a new type of riboregulator that initiates RNA-RNA interactions through the loop portions of RNA stem-loop structures was developed. These loop-initiated RNA activators (LIRAs) provide multiple advantages compared to toehold-based riboregulators, exhibiting ultralow signal leakage in vivo, lacking any trigger RNA sequence constraints, and appending no additional residues to the output protein. Harnessing LIRAs as modular parts, logic gates that exploit loop-mediated control of mRNA folding state to implement AND and OR operations with up to three sequence-independent input RNAs were constructed. LIRA circuits can also be ported to paper-based cell-free reactions to implement portable systems with molecular computing and sensing capabilities. LIRAs can detect RNAs from a variety of different pathogens, such as HIV, Zika, dengue, yellow fever, and norovirus, and after coupling to isothermal amplification reactions, provide visible test results down to concentrations of 20 aM (12 RNA copies/µL). And the logic functionality of LIRA circuits can be used to specifically identify different HIV strains and influenza A subtypes. These findings demonstrate that toehold- and loop-mediated RNA-RNA interactions are both powerful strategies for implementing RNA-based computing systems for intracellular and diagnostic applications. / Dissertation/Thesis / Doctoral Dissertation Biochemistry 2019
28

Point-of-care Blood Coagulation Monitoring Using Low-cost Paper-based No-reaction Lateral Flow Assay Device

Li, Hua 29 October 2018 (has links)
No description available.
29

Super-stretchable paper-based materials for 3D forming

Khakalo, Alexey, Kouko, Jarmo, Retulainen, Elias, Rojas, Orlando J. 30 May 2018 (has links)
Paper is renewable, recyclable, sustainable and biodegradable material and, as a result, paper-based materials are widely used in the world packaging market. However, paper-based materials cannot compete with plastics in terms of processability into various 3D shapes. This is due to poor formability of paper, which is closely associated with its toughness. To improve paper formability, we report on a facile and green method that combines fiber and paper mechanical modifications at different structural levels as well as biopolymer treatment via spraying. As a result, a remarkable elongation of ∼30% was achieved after proposed combined approach on the laboratory scale. At the same time, a significant increase in tensile strength and stiffness (by ∼306% and ∼690%, respectively) was observed. Overall, an inexpensive, green, and scalable approach is introduced to improve formability of fiber networks that in turn allows preparation of 3D shapes in the processes with fixed paper blanks such as vacuum forming, hydroforming, hot pressing, etc.
30

ELECTROANALYTICAL PAPER-BASED SENSORS FOR IN-FIELD DETECTION OF CHLORATE-BASED EXPLOSIVES AND QUANTIFICATION OF OXYANIONS

Carolina Guimaraes Vega (15339037) 18 May 2023 (has links)
<p> </p> <p><em>Improvised explosive devices (IEDs) are a global threat due to their destructive potential, the easy access to raw materials, and online instructions to manufacture them. These circumstances have led to an increase in the number of IEDs using potassium chlorate as an oxidizer. The standard methods to detect chlorate are mainly designed for laboratory-only testing. Thus, field instrumentation capable of detecting oxidizers from explosives fuel-oxidizers is critical for crime scene investigation and counterterrorism efforts (described in Chapter 1). We developed a paper-based sensor for the in-field detection of chlorate (described in Chapter 2). The sensor is low-cost, disposable, portable, and inexpensive to fabricate, and its flexibility features allow for surface sampling without sample destruction. The sensor has an electrodeposited molybdate sensing layer, as chlorate was reported to have a catalytic effect on the molybdate reduction. The chlorate detection relies on monitoring the change in redox activity of the molybdate sensing layer using different electroanalytical techniques. We effectively demonstrated the analytical performance of the sensor (Chapter 3), obtaining a limit of detection of 1.2 mM and a limit of quantification of 4.10 mM. We evaluated the selectivity of the sensor by testing other oxidizers, such as perchlorate and nitrate, which did not present any electrochemical activity with the molybdate sensing layer.</em></p> <p><em>Additionally, we performed an interferent study with sugar, commonly used as fuel in IEDs, and other common white household powders such as baking soda, flour, and corn starch and neither a false positive nor a false negative result was observed (Chapter 3). As bromate has been reported to have a stronger catalytic effect than chlorate on the redox activity of molybdate, the quantification of bromate was also explored, and a bromate sensor was developed using the findings of the chlorate sensor (Chapter 4). The reaction mechanism involved in the molybdate</em></p> <p><em>reduction was explored and discussed in Chapter 5. The capability of the sensor in detecting chlorate from combusted samples and post-blast samples was successfully demonstrated in Chapter 6, as well as the design of encased prototypes to allow for an in-field presumptive test, storage, and transport for in-laboratory confirmatory tests and compared the performance of the sensor to the available commercial tests.</em></p>

Page generated in 0.0261 seconds