Spelling suggestions: "subject:"pappus"" "subject:"mappus""
11 |
La théorie des courbes et des équations dans la Géométrie cartésienne : 1637-1661. [version déposée]Maronne, Sebastien 19 September 2007 (has links) (PDF)
Dans cette thèse, nous étudions trois thèmes qui nous sont apparus centraux dans la Géométrie cartésienne : le problème de Pappus, le problème des tangentes et des normales, et un problème de gnomonique connu sous le nom de Problema Astronomicum. Par " Géométrie cartésienne ", nous entendons le corpus formé non seulement par la Géométrie, publiée en 1637, mais également par la Correspondance cartésienne et les deux éditions latines placées sous la direction de Frans van Schooten, publiées respectivement en 1649 et 1659-1661. Nous étudions la genèse de la théorie des courbes géométriques définies par des équations algébriques en particulier à travers les controverses qui apparaissent dans la correspondance cartésienne : la controverse avec Roberval sur le problème de Pappus, la controverse avec Fermat sur les tangentes, et la controverse avec Stampioen sur le Problema astronomicum. Nous souhaitons ainsi montrer que la Géométrie de la Correspondance constitue un moyen terme entre la Géométrie de 1637 et les éditions latines de 1649 et 1659-1661, mettant en lumière les enjeux et les difficultés du processus de création de la courbe algébrique comme objet. D'autre part, nous examinons la méthode des tangentes de Fermat et la méthode des normales de Descartes, en les rapportant à une matrice commune formée par le traité des Coniques d'Apollonius, plus précisément, le Livre I et le Livre V consacré à une à théorie des droites minimales.
|
12 |
Vybrané problémy z planimetrie / Selected problems from planimetryMÍKOVÁ, Lucie January 2017 (has links)
This diploma thesis is focused on Selected problems in planimetry. The aim of this diploma thesis is description not only planimetric problems and their verification in a dynamic mathematical program GeoGebra, but also presentation of the author after whom it is called. The thesis is illustrated with pictures, which can help the reader to understand the problem and verification. This thesis can be used as a supplement the curriculum in secondary schools, where using dynamic program GeoGebra and subsequent verification may reach a better understanding of the topic.
|
Page generated in 0.0246 seconds