Spelling suggestions: "subject:"parametric models"" "subject:"arametric models""
31 |
Modelos parcialmente lineares com erros simétricos autoregressivos de primeira ordem / Symmetric partially linear models with first-order autoregressive errors.Relvas, Carlos Eduardo Martins 19 April 2013 (has links)
Neste trabalho, apresentamos os modelos simétricos parcialmente lineares AR(1), que generalizam os modelos parcialmente lineares para a presença de erros autocorrelacionados seguindo uma estrutura de autocorrelação AR(1) e erros seguindo uma distribuição simétrica ao invés da distribuição normal. Dentre as distribuições simétricas, podemos considerar distribuições com caudas mais pesadas do que a normal, controlando a curtose e ponderando as observações aberrantes no processo de estimação. A estimação dos parâmetros do modelo é realizada por meio do critério de verossimilhança penalizada, que utiliza as funções escore e a matriz de informação de Fisher, sendo todas essas quantidades derivadas neste trabalho. O número efetivo de graus de liberdade e resultados assintóticos também são apresentados, assim como procedimentos de diagnóstico, destacando-se a obtenção da curvatura normal de influência local sob diferentes esquemas de perturbação e análise de resíduos. Uma aplicação com dados reais é apresentada como ilustração. / In this master dissertation, we present the symmetric partially linear models with AR(1) errors that generalize the normal partially linear models to contain autocorrelated errors AR(1) following a symmetric distribution instead of the normal distribution. Among the symmetric distributions, we can consider heavier tails than the normal ones, controlling the kurtosis and down-weighting outlying observations in the estimation process. The parameter estimation is made through the penalized likelihood by using score functions and the expected Fisher information. We derive these functions in this work. The effective degrees of freedom and asymptotic results are also presented as well as the residual analysis, highlighting the normal curvature of local influence under different perturbation schemes. An application with real data is given for illustration.
|
32 |
Modelos parcialmente lineares com erros simétricos autoregressivos de primeira ordem / Symmetric partially linear models with first-order autoregressive errors.Carlos Eduardo Martins Relvas 19 April 2013 (has links)
Neste trabalho, apresentamos os modelos simétricos parcialmente lineares AR(1), que generalizam os modelos parcialmente lineares para a presença de erros autocorrelacionados seguindo uma estrutura de autocorrelação AR(1) e erros seguindo uma distribuição simétrica ao invés da distribuição normal. Dentre as distribuições simétricas, podemos considerar distribuições com caudas mais pesadas do que a normal, controlando a curtose e ponderando as observações aberrantes no processo de estimação. A estimação dos parâmetros do modelo é realizada por meio do critério de verossimilhança penalizada, que utiliza as funções escore e a matriz de informação de Fisher, sendo todas essas quantidades derivadas neste trabalho. O número efetivo de graus de liberdade e resultados assintóticos também são apresentados, assim como procedimentos de diagnóstico, destacando-se a obtenção da curvatura normal de influência local sob diferentes esquemas de perturbação e análise de resíduos. Uma aplicação com dados reais é apresentada como ilustração. / In this master dissertation, we present the symmetric partially linear models with AR(1) errors that generalize the normal partially linear models to contain autocorrelated errors AR(1) following a symmetric distribution instead of the normal distribution. Among the symmetric distributions, we can consider heavier tails than the normal ones, controlling the kurtosis and down-weighting outlying observations in the estimation process. The parameter estimation is made through the penalized likelihood by using score functions and the expected Fisher information. We derive these functions in this work. The effective degrees of freedom and asymptotic results are also presented as well as the residual analysis, highlighting the normal curvature of local influence under different perturbation schemes. An application with real data is given for illustration.
|
33 |
Ensaios sobre a estrutura a termo da taxa de jurosGlasman, Daniela Kubudi 25 February 2013 (has links)
Submitted by Daniela Kubudi Glasman (dkubudi@gmail.com) on 2014-06-23T17:18:45Z
No. of bitstreams: 1
tese_DanielaKubudi_final.pdf: 1329488 bytes, checksum: 78a5e9b2527544313ec47b6425dbeb07 (MD5) / Approved for entry into archive by BRUNA BARROS (bruna.barros@fgv.br) on 2014-10-27T16:31:57Z (GMT) No. of bitstreams: 1
tese_DanielaKubudi_final.pdf: 1329488 bytes, checksum: 78a5e9b2527544313ec47b6425dbeb07 (MD5) / Approved for entry into archive by Marcia Bacha (marcia.bacha@fgv.br) on 2014-11-13T13:38:37Z (GMT) No. of bitstreams: 1
tese_DanielaKubudi_final.pdf: 1329488 bytes, checksum: 78a5e9b2527544313ec47b6425dbeb07 (MD5) / Made available in DSpace on 2014-11-13T13:39:30Z (GMT). No. of bitstreams: 1
tese_DanielaKubudi_final.pdf: 1329488 bytes, checksum: 78a5e9b2527544313ec47b6425dbeb07 (MD5)
Previous issue date: 2013-02-25 / This thesis consists of three works that analyses the term structure of interest rates using different datasets and models. Chapter 1 proposes a parametric interest rate model that allows for segmentation and local shocks in the term structure. Adopting U.S. Treasury data, two versions of this segmented model are implemented. Based on a sequence of 142 forecasting experiments, the proposed models are compared to established benchrnarks and find that they outperform in out-of-sample forecasting results, specially for short-term maturities and for the 12-month horizon forecast. Chapter 2 adds no-arbitrage restrictions when estimating a dynamic gaussian polynomial term structure model for the Brazilian interest rate market. This article propose an important approximation of the time series of term structure risk factors, that allows to extract the risk premium embedded in interest rate zero coupon instruments without having to run a fui! optimization of a dynamic model. This methodology has the advantage to be easily implemented and provides a good approximation for the term structure risk premia that can be used in many applications. Chapter 3 models the joint dynamic of nominal and real yields using an affine macro-finance no-arbitrage term structure model in order to decompose the break even inflation rates into inflation risk premiums and inflation expectations in the US market. The Yields-Only and the Macro version of this model are implemented and the estimated inflation risk premiums obtained are small and quite stable during the sample period, but have differences when comparing the two versions of the model. / Esta tese é composta de três artigos que analisam a estrutura a termo das taxas de juros usando diferentes bases de dados e modelos. O capítulo 1 propõe um modelo paramétrico de taxas de juros que permite a segmentação e choques locais na estrutura a termo. Adotando dados do tesouro americano, duas versões desse modelo segmentado são implementadas. Baseado em uma sequência de 142 experimentos de previsão, os modelos propostos são comparados à benchmarks e concluí-se que eles performam melhor nos resultados das previsões fora da amostra, especialmente para as maturidades curtas e para o horizonte de previsão de 12 meses. O capítulo 2 acrescenta restrições de não arbitragem ao estimar um modelo polinomial gaussiano dinâmico de estrutura a termo para o mercado de taxas de juros brasileiro. Esse artigo propõe uma importante aproximação para a série temporal dos fatores de risco da estrutura a termo, que permite a extração do prêmio de risco das taxas de juros sem a necessidade de otimização de um modelo dinâmico completo. Essa metodologia tem a vantagem de ser facilmente implementada e obtém uma boa aproximação para o prêmio de risco da estrutura a termo, que pode ser usada em diferentes aplicações. O capítulo 3 modela a dinâmica conjunta das taxas nominais e reais usando um modelo afim de não arbitagem com variáveis macroeconômicas para a estrutura a termo, afim de decompor a diferença entre as taxas nominais e reais em prêmio de risco de inflação e expectativa de inflação no mercado americano. Uma versão sem variáveis macroeconômicas e uma versão com essas variáveis são implementadas e os prêmios de risco de inflação obtidos são pequenos e estáveis no período analisado, porém possuem diferenças na comparação dos dois modelos analisados.
|
34 |
Les modèles de régression dynamique et leurs applications en analyse de survie et fiabilité / Dynamic regression models and their applications in survival and reliability analysisTran, Xuan Quang 26 September 2014 (has links)
Cette thèse a été conçu pour explorer les modèles dynamiques de régression, d’évaluer les inférences statistiques pour l’analyse des données de survie et de fiabilité. Ces modèles de régression dynamiques que nous avons considérés, y compris le modèle des hasards proportionnels paramétriques et celui de la vie accélérée avec les variables qui peut-être dépendent du temps. Nous avons discuté des problèmes suivants dans cette thèse.Nous avons présenté tout d’abord une statistique de test du chi-deux généraliséeY2nquiest adaptative pour les données de survie et fiabilité en présence de trois cas, complètes,censurées à droite et censurées à droite avec les covariables. Nous avons présenté en détailla forme pratique deY2nstatistique en analyse des données de survie. Ensuite, nous avons considéré deux modèles paramétriques très flexibles, d’évaluer les significations statistiques pour ces modèles proposées en utilisantY2nstatistique. Ces modèles incluent du modèle de vie accélérés (AFT) et celui de hasards proportionnels (PH) basés sur la distribution de Hypertabastic. Ces deux modèles sont proposés pour étudier la distribution de l’analyse de la duré de survie en comparaison avec d’autre modèles paramétriques. Nous avons validé ces modèles paramétriques en utilisantY2n. Les études de simulation ont été conçus.Dans le dernier chapitre, nous avons proposé les applications de ces modèles paramétriques à trois données de bio-médicale. Le premier a été fait les données étendues des temps de rémission des patients de leucémie aiguë qui ont été proposées par Freireich et al. sur la comparaison de deux groupes de traitement avec des informations supplémentaires sur les log du blanc du nombre de globules. Elle a montré que le modèle Hypertabastic AFT est un modèle précis pour ces données. Le second a été fait sur l’étude de tumeur cérébrale avec les patients de gliome malin, ont été proposées par Sauerbrei & Schumacher. Elle a montré que le meilleur modèle est Hypertabastic PH à l’ajout de cinq variables de signification. La troisième demande a été faite sur les données de Semenova & Bitukov, à concernant les patients de myélome multiple. Nous n’avons pas proposé un modèle exactement pour ces données. En raison de cela était les intersections de temps de survie.Par conséquent, nous vous conseillons d’utiliser un autre modèle dynamique que le modèle de la Simple Cross-Effect à installer ces données. / This thesis was designed to explore the dynamic regression models, assessing the sta-tistical inference for the survival and reliability data analysis. These dynamic regressionmodels that we have been considered including the parametric proportional hazards andaccelerated failure time models contain the possibly time-dependent covariates. We dis-cussed the following problems in this thesis.At first, we presented a generalized chi-squared test statisticsY2nthat is a convenient tofit the survival and reliability data analysis in presence of three cases: complete, censoredand censored with covariates. We described in detail the theory and the mechanism to usedofY2ntest statistic in the survival and reliability data analysis. Next, we considered theflexible parametric models, evaluating the statistical significance of them by usingY2nandlog-likelihood test statistics. These parametric models include the accelerated failure time(AFT) and a proportional hazards (PH) models based on the Hypertabastic distribution.These two models are proposed to investigate the distribution of the survival and reliabilitydata in comparison with some other parametric models. The simulation studies were de-signed, to demonstrate the asymptotically normally distributed of the maximum likelihood estimators of Hypertabastic’s parameter, to validate of the asymptotically property of Y2n test statistic for Hypertabastic distribution when the right censoring probability equal 0% and 20%.n the last chapter, we applied those two parametric models above to three scenes ofthe real-life data. The first one was done the data set given by Freireich et al. on thecomparison of two treatment groups with additional information about log white blood cellcount, to test the ability of a therapy to prolong the remission times of the acute leukemiapatients. It showed that Hypertabastic AFT model is an accurate model for this dataset.The second one was done on the brain tumour study with malignant glioma patients, givenby Sauerbrei & Schumacher. It showed that the best model is Hypertabastic PH onadding five significance covariates. The third application was done on the data set given by Semenova & Bitukov on the survival times of the multiple myeloma patients. We did not propose an exactly model for this dataset. Because of that was an existing oneintersection of survival times. We, therefore, suggest fitting other dynamic model as SimpleCross-Effect model for this dataset.
|
Page generated in 0.0615 seconds