• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fabrication and Analysis of Bottom Gate Nanocrystalline Silicon Thin Film Transistors

Shin, Kyung-Wook 15 August 2008 (has links)
Thin film transistors (TFTs) have brought prominent growth in both variety and utility of large area electronics market over the past few decades. Nanocrystalline silicon (nc-Si:H) TFTs have attracted attention recently, due to high-performance and low-cost, as an alternative of amorphous silicon (a-Si:H) and polycrystalline silicon (poly-Si) TFTs. The nc-Si:H TFTs has higher carrier mobility and better device stability than a-Si:H TFTs while lower manufacturing cost than poly-Si TFTs. However, current nc-Si:TFTs have several challenging issues on materials and devices, on which this thesis focuses. In the material study, the gate quality silicon nitride (a-SiNx) films and doped nc-Si:H contacts based on conventional plasma enhanced chemical vapor deposition (PECVD) are investigated. The feasibility of a-SiNx on TFT application is discussed with current-voltage (I-V)/capacitance-voltage(C-V) measurement and Fourier Transform Infrared Spectroscopy (FTIR) results which demonstrate 4.3 MV/cm, relative permittivity of 6.15 and nitrogen rich composition. The doped nc-Si:H for contact layer of TFTs is characterized with Raman Spectroscopy and I-V measurements to reveal 56 % of crystalinity and 0.42 S/cm of dark conductivity. Inverted staggered TFT structure is fabricated for nc-Si:H TFT device research using fully wet etch fabrication process which requires five lithography steps. The process steps are described in detail as well as adaptation of the fabrication process to a backplane fabrication for direct conversion X-ray imagers. The modification of TFT process for backplane fabrication involves two more lithography steps for mushroom electrode formation while other pixel components is incorporated into the five lithography step TFT process. The TFTs are electrically characterized demonstrating 7.22 V of threshold voltage, 0.63 S/decade of subthreshold slope, 0.07 cm2/V•s of field effect mobility, and 106 of on/off ratio. The transfer characteristics of TFTs reveal a severe effect of parasitic resistance which is induced from channel layer itself, a contact between channel layer and doped nc-Si:H contact layer, the resistance of doped nc-Si:H contact layer, and a contact between the doped nc-Si:H layer and source/drain metal electrodes. The parasitic resistance effect is investigated using numerical simulation method by various parasitic resistances, channel length of the TFT, and intrinsic properties of nc-Si:H channel layer. It reveals the parasitic resistance effect become severe when the channel is short and has better quality, therefore, several further research topics on improving contact nc-Si:H quality and process adjustment are required.
2

Fabrication and Analysis of Bottom Gate Nanocrystalline Silicon Thin Film Transistors

Shin, Kyung-Wook 15 August 2008 (has links)
Thin film transistors (TFTs) have brought prominent growth in both variety and utility of large area electronics market over the past few decades. Nanocrystalline silicon (nc-Si:H) TFTs have attracted attention recently, due to high-performance and low-cost, as an alternative of amorphous silicon (a-Si:H) and polycrystalline silicon (poly-Si) TFTs. The nc-Si:H TFTs has higher carrier mobility and better device stability than a-Si:H TFTs while lower manufacturing cost than poly-Si TFTs. However, current nc-Si:TFTs have several challenging issues on materials and devices, on which this thesis focuses. In the material study, the gate quality silicon nitride (a-SiNx) films and doped nc-Si:H contacts based on conventional plasma enhanced chemical vapor deposition (PECVD) are investigated. The feasibility of a-SiNx on TFT application is discussed with current-voltage (I-V)/capacitance-voltage(C-V) measurement and Fourier Transform Infrared Spectroscopy (FTIR) results which demonstrate 4.3 MV/cm, relative permittivity of 6.15 and nitrogen rich composition. The doped nc-Si:H for contact layer of TFTs is characterized with Raman Spectroscopy and I-V measurements to reveal 56 % of crystalinity and 0.42 S/cm of dark conductivity. Inverted staggered TFT structure is fabricated for nc-Si:H TFT device research using fully wet etch fabrication process which requires five lithography steps. The process steps are described in detail as well as adaptation of the fabrication process to a backplane fabrication for direct conversion X-ray imagers. The modification of TFT process for backplane fabrication involves two more lithography steps for mushroom electrode formation while other pixel components is incorporated into the five lithography step TFT process. The TFTs are electrically characterized demonstrating 7.22 V of threshold voltage, 0.63 S/decade of subthreshold slope, 0.07 cm2/V•s of field effect mobility, and 106 of on/off ratio. The transfer characteristics of TFTs reveal a severe effect of parasitic resistance which is induced from channel layer itself, a contact between channel layer and doped nc-Si:H contact layer, the resistance of doped nc-Si:H contact layer, and a contact between the doped nc-Si:H layer and source/drain metal electrodes. The parasitic resistance effect is investigated using numerical simulation method by various parasitic resistances, channel length of the TFT, and intrinsic properties of nc-Si:H channel layer. It reveals the parasitic resistance effect become severe when the channel is short and has better quality, therefore, several further research topics on improving contact nc-Si:H quality and process adjustment are required.
3

Analysis And Design Of A Cuk Switching Regulator

Gunaydin, Zekiye 01 June 2009 (has links) (PDF)
This theses analyzes Cuk converter, that is one of the dc to dc switching converters. For continuous inductor current mode and discontinuous inductor current mode, stedy state operation is analysied. Characteristic parameters are determined. Through State Space Averge Models, Small Signal Models are obtained. Parasitic Resistance effects on steady state and small signal models are determined. Efficency of the switching converter is derived. Open loop transfer functions for continous and discontinuous inductor curret mode are obtained. Parmeters for small signal behaviour is determined and stability is analysied. Parasitic resistance effects on transfer functions is determined. Therotecial analysis are verified with a simulations of designed converter.

Page generated in 0.0574 seconds