Spelling suggestions: "subject:"parasitic diseases"" "subject:"arasitic diseases""
141 |
Identification of TgElp3 as an essential, tail-anchored mitochondrial lysine acetyltransferase in the protozoan pathogen toxoplasma gondiiStilger, Krista L. 11 July 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Toxoplasma gondii, a single-celled eukaryotic pathogen, has infected one-third of the world’s population and is the causative agent of toxoplasmosis. The disease primarily affects immunocompromised individuals such as AIDS, cancer, and transplant patients. The parasites can infect any nucleated cell in warm-blooded vertebrates, but because they preferentially target CNS, heart, and ocular tissue, manifestations of infection often include encephalitis, myocarditis, and a host of neurological and ocular disorders. Toxoplasma can also be transmitted congenitally by a mother who becomes infected for the first time during pregnancy, which may result in spontaneous abortion or birth defects in the child. Unfortunately, the therapy currently available for treating toxoplasmosis exhibits serious side effects and can cause severe allergic reactions. Therefore, there is a desperate need to identify novel drug targets for developing more effective, less toxic treatments. The regulation of proteins via lysine acetylation, a reversible post-translational modification, has previously been validated as a promising avenue for drug development. Lysine acetyltransferases (KATs) are responsible for the acetylation of hundreds of proteins throughout prokaryotic and eukaryotic cells. In Toxoplasma, we identified a KAT that exhibits homology to Elongator protein 3 (TgElp3), the catalytic component of a transcriptional elongation complex. TgElp3 contains the highly conserved radical S-adenosylmethionine and KAT domains but also possesses a unique C-terminal transmembrane domain (TMD). Interestingly, we found that the TMD anchors TgElp3 in the outer mitochondrial membrane (OMM) such that the catalytic domains are oriented towards the cytosol. Our results uncovered the first tail-anchored mitochondrial KAT reported for any species to date. We also discovered a shortened form of Elp3 present in mouse mitochondria, suggesting that Elp3 functions beyond transcriptional elongation across eukaryotes. Furthermore, we established that TgElp3 is essential for parasite viability and that its OMM localization is important for its function, highlighting its value as a potential target for future drug development.
|
142 |
Species Data and Vector Modeling: Evaluating Datasets for Improved Models of Ixodes ricinus Tick Distribution in Europe Under a Changing ClimateJones, Steven 01 December 2022 (has links)
To increase capacity for monitoring and surveillance of tick-borne diseases, publicly available tick distribution and climate change datasets are required to create accurate predictive distribution models. It is difficult, however, to assess model accuracy and utility when using incomplete datasets. The more recent development of comprehensive tick databases for Europe and availability of climate change scenarios from multiple IPCC Assessment Reports allows for improved modeling efforts. Multiple tick datasets were combined and three climate change projections were compared by predicting current and future distributions of Ixodes ricinus ticks in Europe using the MaxEnt species distribution model. Overall, much of Europe contains suitable habitat for the Ixodes ricinus tick, both now and under future climate change projections. Contraction of habitable areas is predicted to occur at lower latitudes and altitudes, while expansion is predicted to occur at higher altitudes in mountainous regions and the higher latitudes, primarily in northern Scandinavia.
|
143 |
Characterization of Novel Antimalarials From Compounds Inspired By Natural Products Using Principal Component Analysis (PCA)Balde, Zarina Marie G 01 January 2018 (has links)
Malaria is caused by a protozoan parasite, Plasmodium falciparum, which is responsible for over 500,000 deaths per year worldwide. Although malaria medicines are working well in many parts of the world, antimalarial drug resistance has emerged as one of the greatest challenges facing malaria control today. Since the malaria parasites are once again developing widespread resistance to antimalarial drugs, this can cause the spread of malaria to new areas and the re-emergence of malaria in areas where it had already been eradicated. Therefore, the discovery and characterization of novel antimalarials is extremely urgent. A previous drug screen in Dr. Chakrabarti's lab identified several natural products (NPs) with antiplasmodial activities. The focus of this study is to characterize the hit compounds using Principal Component Analysis (PCA) to determine structural uniqueness compared to known antimalarial drugs. This study will compare multiple libraries of different compounds, such as known drugs, kinase inhibitors, macrocycles, and top antimalarial hits discovered in our lab. Prioritizing the hit compounds by their chemical uniqueness will lessen the probability of future drug resistance. This is an important step in drug discovery as this will allow us to increase the interpretability of the datasets by creating new uncorrelated variables that will successively maximize variance. Characterization of the Natural Product inspired compounds will enable us to discover potent, selective, and novel antiplasmodial scaffolds that are unique in the 3-dimensional chemical space and will provide critical information that will serve as advanced starting points for the antimalarial drug discovery pipeline.
|
Page generated in 0.0613 seconds