• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 24
  • 21
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 91
  • 59
  • 56
  • 38
  • 31
  • 23
  • 20
  • 17
  • 17
  • 15
  • 15
  • 11
  • 10
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Differential Expression of Cocaine- and Amphetamine-Regulated Transcript-Immunoreactivity in the Rat Spinal Preganglionic Nuclei

Dun, S. L., Chianca, D. A., Dun, N. J., Yang, J., Chang, J. K. 24 November 2000 (has links)
The distribution of cocaine- and amphetamine-regulated transcript-like immunoreactivity (CART-LI) was investigated in the rat spinal cords with the use of an antiserum against the CART peptide fragment 55-102. CART-LI fibers were concentrated in the superficial layers of the dorsal horn of all segments. In addition to CART-LI fibers, intensely labeled somata were detected in the intermediolateral cell column (IML) and other sympathetic preganglionic nuclei of the thoracolumbar segments. In the lumbosacral segments, CART-LI fibers but not somata were seen in the sacral parasympathetic nucleus. Double-labeling the spinal sections with choline acetyltransferase (ChAT)-antisera and CART-antisera revealed that the large majority of ChAT-positive somata in the sympathetic preganglionic nuclei were CART-positive, whereas ChAT-positive somata in the parasympathetic preganglionic nuclei were CART-negative. Our results show that CART-LI is selectively expressed in a population of sympathetic preganglionic neurons (SPNs), but not in parasympathetic preganglionic neurons (PPNs) of the rat.
32

Central-Peripheral Neural Network Interactions Evoked by Vagus Nerve Stimulation: Functional Consequences on Control of Cardiac Function

Ardell, Jeffrey L., Rajendran, Pradeep S., Nier, Heath A., KenKnight, Bruce H., Andrew Armour, J. 01 January 2015 (has links)
Using vagus nerve stimulation (VNS), we sought to determine the contribution of vagal afferents to efferent control of cardiac function. In anesthetized dogs, the right and left cervical vagosympathetic trunks were stimulated in the intact state, following ipsilateral or contralateral vagus nerve transection (VNTx), and then following bilateral VNTx. Stimulations were performed at currents from 0.25 to 4.0 mA, frequencies from 2 to 30 Hz, and a 500-μs pulse width. Right or left VNS evoked significantly greater current-and frequency-dependent suppression of chronotropic, inotropic, and lusitropic function subsequent to sequential VNTx. Bradycardia threshold was defined as the current first required for a 5% decrease in heart rate. The threshold for the right vs. left vagus-induced bradycardia in the intact state (2.91 ± 0.18 and 3.47 ± 0.20 mA, respectively) decreased significantly with right VNTx (1.69 ± 0.17 mA for right and 3.04 ± 0.27 mA for left) and decreased further following bilateral VNTx (1.29 ± 0.16 mA for right and 1.74 ± 0.19 mA for left). Similar effects were observed following left VNTx. The thresholds for afferent-mediated effects on cardiac parameters were 0.62 ± 0.04 and 0.65 ± 0.06 mA with right and left VNS, respectively, and were reflected primarily as augmentation. Afferent-mediated tachycardias were maintained following β-blockade but were eliminated by VNTx. The increased effectiveness and decrease in bradycardia threshold with sequential VNTx suggest that 1) vagal afferents inhibit centrally mediated parasympathetic efferent outflow and 2) the ipsilateral and contralateral vagi exert a substantial buffering capacity. The intact threshold reflects the interaction between multiple levels of the cardiac neural hierarchy.
33

Effect of Neurturin Deficiency on Cholinergic and Catecholaminergic Innervation of the Murine Eye

Hoover, Jeffrey L., Bond, Cherie E., Hoover, Donald B., Defoe, Dennis M. 01 January 2014 (has links)
Neurturin (NRTN) is a neurotrophic factor required for the development of many parasympathetic neurons and normal cholinergic innervation of the heart, lacrimal glands and numerous other tissues. Previous studies with transgenic mouse models showed that NRTN is also essential for normal development and function of the retina (J. Neurosci. 28:4123-4135, 2008). NRTN knockout (KO) mice exhibit a marked thinning of the outer plexiform layer (OPL) of the retina, with reduced abundance of horizontal cell dendrites and axons, and aberrant projections of horizontal cells and bipolar cells into the outer nuclear layer. The effects of NRTN deletion on specific neurotransmitter systems in the retina and on cholinergic innervation of the iris are unknown. To begin addressing this deficiency, we used immunohistochemical methods to study cholinergic and noradrenergic innervation of the iris and the presence and localization of cholinergic and dopaminergic neurons and nerve fibers in eyes from adult male wild-type (WT) and NRTN KO mice (age 4-6 months). Mice were euthanized, and eyes were removed and fixed in cold neutral buffered formalin or 4% paraformaldehyde. Formalin-fixed eyes were embedded in paraffin, and 5μm cross-sections were collected. Representative sections were stained with hematoxylin and eosin or processed for fluorescence immunohistochemistry after treatment for antigen retrieval. Whole mount preparations were dissected from paraformaldehyde fixed eyes and used for immunohistochemistry. Cholinergic and catecholaminergic nerve fibers were labeled with primary antibodies to the vesicular acetylcholine transporter (VAChT) and tyrosine hydroxylase (TH), respectively. Cholinergic and dopaminergic cell bodies were labeled with antibodies to choline acetyltransferase (ChAT) and TH, respectively. Cholinergic innervation of the mouse iris was restricted to the sphincter region, and noradrenergic fibers occurred throughout the iris and in the ciliary processes. This pattern was unaffected by deletion of NRTN. Furthermore, functional experiments demonstrated that cholinergic regulation of the pupil diameter was retained in NRTN KO mice. Hematoxylin and eosin stains of the retina confirmed a marked thinning of the OPL in KO mice. VAChT and ChAT staining of the retina revealed two bands of cholinergic processes in the inner plexiform layer, and these were unaffected by NRTN deletion. Likewise, NRTN deletion did not affect the abundance of ChAT-positive ganglion and amacrine cells. In marked contrast, staining for TH showed an increased abundance of dopaminergic processes in the OPL of retina from KO mice. Staining of retinal whole mounts for TH showed no difference in the abundance of dopaminergic amacrine cells between WT and KO mice. These findings demonstrate that the neurotrophic factor NRTN is not required for the development or maintenance of cholinergic innervation of the iris, cholinergic control of pupil diameter, or for development of cholinergic and dopaminergic amacrine cells of the retina. However, NRTN deficiency causes a marked reduction in the size of the OPL and aberrant growth of dopaminergic processes into this region.
34

Development of Cardiac Parasympathetic Neurons, Glial Cells, and Regional Cholinergic Innervation of the Mouse Heart

Fregoso, S. P., Hoover, D. B. 27 September 2012 (has links)
Very little is known about the development of cardiac parasympathetic ganglia and cholinergic innervation of the mouse heart. Accordingly, we evaluated the growth of cholinergic neurons and nerve fibers in mouse hearts from embryonic day 18.5 (E18.5) through postnatal day 21(P21). Cholinergic perikarya and varicose nerve fibers were identified in paraffin sections immunostained for the vesicular acetylcholine transporter (VAChT). Satellite cells and Schwann cells in adjacent sections were identified by immunostaining for S100β calcium binding protein (S100) and brain-fatty acid binding protein (B-FABP). We found that cardiac ganglia had formed in close association to the atria and cholinergic innervation of the atrioventricular junction had already begun by E18.5. However, most cholinergic innervation of the heart, including the sinoatrial node, developed postnatally (P0.5-P21) along with a doubling of the cross-sectional area of cholinergic perikarya. Satellite cells were present throughout neonatal cardiac ganglia and expressed primarily B-FABP. As they became more mature at P21, satellite cells stained strongly for both B-FABP and S100. Satellite cells appeared to surround most cardiac parasympathetic neurons, even in neonatal hearts. Mature Schwann cells, identified by morphology and strong staining for S100, were already present at E18.5 in atrial regions that receive cholinergic innervation at later developmental times. The abundance and distribution of S100-positive Schwann cells increased postnatally along with nerve density. While S100 staining of cardiac Schwann cells was maintained in P21 and older mice, Schwann cells did not show B-FABP staining at these times. Parallel development of satellite cells and cholinergic perikarya in the cardiac ganglia and the increase in abundance of Schwann cells and varicose cholinergic nerve fibers in the atria suggest that neuronal-glial interactions could be important for development of the parasympathetic nervous system in the heart.
35

Structural and Functional Cardiac Cholinergic Deficits in Adult Neurturin Knockout Mice

Mabe, Abigail M., Hoover, Donald B. 01 April 2009 (has links)
Aims: Previous work provided indirect evidence that the neurotrophic factor neurturin (NRTN) is required for normal cholinergic innervation of the heart. This study used nrtn knockout (KO) and wild-type (WT) mice to determine the effect of nrtn deletion on cardiac cholinergic innervation and function in the adult heart. Methods and results: Immunohistochemistry, confocal microscopy, and quantitative image analysis were used to directly evaluate intrinsic cardiac neuronal development. Atrial acetylcholine (ACh) levels were determined as an indirect index of cholinergic innervation. Cholinergic function was evaluated by measuring negative chronotropic responses to right vagal nerve stimulation in anaesthetized mice and responses of isolated atria to muscarinic agonists. KO hearts contained only 35% the normal number of cholinergic neurons, and the residual cholinergic neurons were 15% smaller than in WT. Cholinergic nerve density at the sinoatrial node was reduced by 87% in KOs, but noradrenergic nerve density was unaffected. Atrial ACh levels were substantially lower in KO mice (0.013 ± 0.004 vs. 0.050 ± 0.011 pmol/μg protein; P < 0.02) as expected from cholinergic neuron and nerve fibre deficits. Maximum bradycardia evoked by vagal stimulation was reduced in KO mice (38 ± 6% vs. 69 ± 3% decrease at 20 Hz; P < 0.001), and chronotropic responses took longer to develop and fade. In contrast to these deficits, isolated atria from KO mice had normal post-junctional sensitivity to carbachol and bethanechol. Conclusion: These findings demonstrate that NRTN is essential for normal cardiac cholinergic innervation and cholinergic control of heart rate. The presence of residual cardiac cholinergic neurons and vagal bradycardia in KO mice suggests that additional neurotrophic factors may influence this system.
36

Cholinergic Neurons of Mouse Intrinsic Cardiac Ganglia Contain Noradrenergic Enzymes, Norepinephrine Transporters, and the Neurotrophin Receptors Tropomyosin-Related Kinase A and p75

Hoard, Jennifer, Hoover, Donald B., Mabe, A. M., Blakely, R. D., Feng, N., Paolocci, N. 22 September 2008 (has links)
Half of the cholinergic neurons of human and primate intrinsic cardiac ganglia (ICG) have a dual cholinergic/noradrenergic phenotype. Likewise, a large subpopulation of cholinergic neurons of the mouse heart expresses enzymes needed for synthesis of norepinephrine (NE), but they lack the vesicular monoamine transporter type 2 (VMAT2) required for catecholamine storage. In the present study, we determined the full scope of noradrenergic properties (i.e. synthetic enzymes and transporters) expressed by cholinergic neurons of mouse ICG, estimated the relative abundance of neurons expressing different elements of the noradrenergic phenotype, and evaluated the colocalization of cholinergic and noradrenergic markers in atrial nerve fibers. Stellate ganglia were used as a positive control for noradrenergic markers. Using fluorescence immunohistochemistry and confocal microscopy, we found that about 30% of cholinergic cell bodies contained tyrosine hydroxylase (TH), including the activated form that is phosphorylated at Ser-40 (pSer40 TH). Dopamine β-hydroxylase (DBH) and norepinephrine transporter (NET) were present in all cholinergic somata, indicating a wider capability for dopamine metabolism and catecholamine uptake. Yet, cholinergic somata lacked VMAT2, precluding the potential for NE storage and vesicular release. In contrast to cholinergic somata, cardiac nerve fibers rarely showed colocalization of cholinergic and noradrenergic markers. Instead, these labels were closely apposed but clearly distinct from each other. Since cholinergic somata expressed several noradrenergic proteins, we questioned whether these neurons might also contain trophic factor receptors typical of noradrenergic neurons. Indeed, we found that all cholinergic cell bodies of mouse ICG, like noradrenergic cell bodies of the stellate ganglia, contained both tropomyosin-related kinase A (TrkA) and p75 neurotrophin receptors. Collectively, these findings demonstrate that mouse intrinsic cardiac neurons (ICNs), like those of humans, have a complex neurochemical phenotype that goes beyond the classical view of cardiac parasympathetic neurons. They also suggest that neurotrophins and local NE synthesis might have important effects on neurons of the mouse ICG.
37

Defining the Neural Fulcrum for Chronic Vagus Nerve Stimulation: Implications for Integrated Cardiac Control

Ardell, Jeffrey L., Nier, Heath, Hammer, Matthew, Southerland, E. Marie, Ardell, Christopher L., Beaumont, Eric, KenKnight, Bruce H., Armour, J. 15 November 2017 (has links)
Key points: The evoked cardiac response to bipolar cervical vagus nerve stimulation (VNS) reflects a dynamic interaction between afferent mediated decreases in central parasympathetic drive and suppressive effects evoked by direct stimulation of parasympathetic efferent axons to the heart. The neural fulcrum is defined as the operating point, based on frequency–amplitude–pulse width, where a null heart rate response is reproducibly evoked during the on-phase of VNS. Cardiac control, based on the principal of the neural fulcrum, can be elicited from either vagus. Beta-receptor blockade does not alter the tachycardia phase to low intensity VNS, but can increase the bradycardia to higher intensity VNS. While muscarinic cholinergic blockade prevented the VNS-induced bradycardia, clinically relevant doses of ACE inhibitors, beta-blockade and the funny channel blocker ivabradine did not alter the VNS chronotropic response. While there are qualitative differences in VNS heart control between awake and anaesthetized states, the physiological expression of the neural fulcrum is maintained. Abstract: Vagus nerve stimulation (VNS) is an emerging therapy for treatment of chronic heart failure and remains a standard of therapy in patients with treatment-resistant epilepsy. The objective of this work was to characterize heart rate (HR) responses (HRRs) during the active phase of chronic VNS over a wide range of stimulation parameters in order to define optimal protocols for bidirectional bioelectronic control of the heart. In normal canines, bipolar electrodes were chronically implanted on the cervical vagosympathetic trunk bilaterally with anode cephalad to cathode (n = 8, ‘cardiac’ configuration) or with electrode positions reversed (n = 8, ‘epilepsy’ configuration). In awake state, HRRs were determined for each combination of pulse frequency (2–20 Hz), intensity (0–3.5 mA) and pulse widths (130–750 μs) over 14 months. At low intensities and higher frequency VNS, HR increased during the VNS active phase owing to afferent modulation of parasympathetic central drive. When functional effects of afferent and efferent fibre activation were balanced, a null HRR was evoked (defined as ‘neural fulcrum’) during which HRR ≈ 0. As intensity increased further, HR was reduced during the active phase of VNS. While qualitatively similar, VNS delivered in the epilepsy configuration resulted in more pronounced HR acceleration and reduced HR deceleration during VNS. At termination, under anaesthesia, transection of the vagi rostral to the stimulation site eliminated the augmenting response to VNS and enhanced the parasympathetic efferent-mediated suppressing effect on electrical and mechanical function of the heart. In conclusion, VNS activates central then peripheral aspects of the cardiac nervous system. VNS control over cardiac function is maintained during chronic therapy.
38

Primary Afferent Projections From Dorsal and Ventral Roots to Autonomic Preganglionic Neurons in the Cat Sacral Spinal Cord: Light and Electron Microscopic Observations

Mawe, G. M., Bresnahan, J. C., Beattie, M. S. 02 January 1984 (has links)
HRP applied to cut dorsal and ventral roots of the cat sacral spinal cord labeled afferent axons with swellings in close apposition to labeled preganglionic neurons (PGNs) in the sacral parasympathetic nucleus. Electron microscopy allowed characterization of synaptic contacts between afferents and PGNs. The results suggest that both the dorsal and ventral root afferents can directly activate autonomic preganglionic neurons.
39

Microscopic Analysis Of Sympathetic And Parasympathetic Distribution, Terminal Morphology, And Interaction In Whole-mount Atria

Harden, Scott 01 January 2009 (has links)
The sympathetic (SNS) and parasympathetic (PSNS) branches of the autonomic nervous system (ANS) innervate the heart, exerting excitatory and inhibitory influences (respectively) over cardiac functions (heart rate, AV conduction velocity, and contractility). However, the distribution and structure of SNS and PSNS innervation has not yet been well studied. Detailed characterization of the distributional organization and structural morphology of the SNS and PSNS in normal states is essential to the study of pathological autonomic remodeling. The present study utilized double immunohistochemical labeling techniques to examine tyrosine hydroxylase (TH) immunoreactive (IR) SNS and vesicular acetylcholine transporter (VAChT) IR PSNS axons and terminal structures in whole-mount atria of C57BL/6 mice. We found that: (1) The atria contain a dense network of ANS axons. TH-IR, VAChT-IR, and dual cholinergic/dopaminergic TH+VAChT-IR axons travel together in bundles on the epicardium before branching into differentiated terminal structures. (2) Parallel TH-IR and VAChT-IR axons often diverge from epicardial bundles and travel in parallel (less than 1μm apart) before forming terminal structures in the epicardium and myocardium. Such parallel SNS/PSNS axons interdigitize and have large alternating varicosities along their length adjacent to one other, suggesting possible antagonistic communication between both branches of the ANS at the prejunctional level. (3) Intrinsic cardiac ganglia (ICG) are targets for extrinsic sympathetic nerves which travel through ICG without forming large synaptic varicosities around cardiac principal neurons (PNs). (4) Small intensely fluorescent (SIF) cells (presumably chemoreceptors and/or interneurons) exist near SNS bundles, inside ICG, and in the epicardium unaccompanied by ganglia and nerve bundles. (5) The subpopulation of TH+VAChT-IR PNs within ICG form loose terminals in the atria and do not project to other PNs. (6) Both TH-IR and VAChT-IR axons innervate atrial vasculature. (7) TH-IR axons innervate fat pads adjacent to the heart. (8) SNS/PSNS parallelism is not exclusive to the atria. Similar structures exist in the esophagus, right ventricle, and small intestine. This study provides a novel and overall view of the innervation and interaction of the SNS and PSNS in the atria. This will underlie a foundation for future physiological, pharmacological, and anatomical studies of SNS/PSNS innervation, interaction, and remodeling in pathological states (such as aging, intermittent hypoxia and diabetes).
40

The Parasympathetic Nervous System in Human Heart Failure

French, Jessica Autumn 26 May 2011 (has links)
No description available.

Page generated in 0.0627 seconds