• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 275
  • 120
  • 70
  • 24
  • 12
  • 5
  • 5
  • 5
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 715
  • 715
  • 715
  • 168
  • 154
  • 139
  • 127
  • 126
  • 124
  • 103
  • 101
  • 100
  • 93
  • 93
  • 83
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
411

Stability and regularity of defects in crystalline solids

Hudson, Thomas January 2014 (has links)
This thesis is devoted to the mathematical analysis of models describing the energy of defects in crystalline solids via variational methods. The first part of this work studies a discrete model describing the energy of a point defect in a one dimensional chain of atoms. We derive an expansion of the ground state energy using Gamma-convergence, following previous work on similar models [BDMG99,BC07,SSZ11]. The main novelty here is an explicit characterisation of the first order limit as the solution of a variational problem in an infinite lattice. Analysing this variational problem, we prove a regularity result for the perturbation caused by the defect, and demonstrate the order of the next term in the expansion. The second main topic is a discrete model describing screw dislocations in body centred cubic crystals. We formulate an anti plane lattice model which describes the energy difference between deformations and, using the framework defined in [AO05], provide a kinematic description of the Burgers vector, which is a key geometric quantity used to describe dislocations. Apart from the anti plane restriction, this model is invariant under all the natural symmetries of the lattice and in particular allows for the creation and annihilation of dislocations. The energy difference formulation enables us to provide a clear definition of what it means to be a stable deformation. The main results of the analysis of this model are then first, a proof that deformations with unit net Burgers vector exist as globally stable states in an infinite body, and second, that deformations containing multiple screw dislocations exist as locally stable states in both infinite bodies and finite convex bodies. To prove the former result, we establish coercivity with respect to the elastic strain, and exploit a concentration compactness principle. In the latter case, we use a form of the inverse function theorem, proving careful estimates on the residual and stability of an ansatz which combines continuum linear elasticity theory with an atomistic core correction.
412

Comparing stochastic discrete and deterministic continuum models of cell migration

Yates, Christian January 2011 (has links)
Multiscale mathematical modelling is one of the major driving forces behind the systems biology revolution. The inherently interdisciplinary nature of its study and the multiple spatial and temporal scales which characterise its dynamics make cell migration an ideal candidate for a systems biology approach. Due to its ease of analysis and its compatibility with the type of data available, phenomenological continuum modelling has long been the default framework adopted by the cell migration modelling community. However, in recent years, with increased computational power, complex, discrete, cell-level models, able to capture the detailed dynamics of experimental systems, have become more prevalent. These two modelling paradigms have complementary advantages and disadvantages. The challenge now is to combine these two seemingly disparate modelling regimes in order to exploit the benefits offered by each in a comprehensive, multiscale equivalence framework for modelling cell migration. The main aim of this thesis is to begin with an on-lattice, individual-based model and derive a continuum, population-based model which is equivalent to it in certain limits. For simple models this is relatively easy to achieve: beginning with a one-dimensional, discrete model of cell migration on a regular lattice we derive a partial differential equation for the evolution of cell density on the same domain. We are also able to simply incorporate various signal sensing dynamics into our fledgling equivalence framework. However, as we begin to incorporate more complex model attributes such as cell proliferation/death, signalling dynamics and domain growth we find that deriving an equivalent continuum model requires some innovative mathematics. The same is true when considering a non-uniform domain discretisation in the one-dimensional model and when determining appropriate domain discretisations in higher dimensions. Higher-dimensional simulations of individual-based models bring with them their own computational challenges. Increased lattice sites in order to maintain spatial resolution and increased cell numbers in order to maintain consistent densities lead to dramatic reductions in simulation speeds. We consider a variety of methods to increase the efficiency of our simulations and derive novel acceleration techniques which can be applied to general reaction systems but are especially useful for our spatially extended cell migration algorithms. The incorporation of domain growth in higher dimensions is the final hurdle we clear on our way to constructing a complex discrete-continuum modelling framework capable of representing signal-mediated cell migration on growing (possibly non-standard) domains in multiple dimensions.
413

Excluded-volume effects in stochastic models of diffusion

Bruna, Maria January 2012 (has links)
Stochastic models describing how interacting individuals give rise to collective behaviour have become a widely used tool across disciplines—ranging from biology to physics to social sciences. Continuum population-level models based on partial differential equations for the population density can be a very useful tool (when, for large systems, particle-based models become computationally intractable), but the challenge is to predict the correct macroscopic description of the key attributes at the particle level (such as interactions between individuals and evolution rules). In this thesis we consider the simple class of models consisting of diffusive particles with short-range interactions. It is relevant to many applications, such as colloidal systems and granular gases, and also for more complex systems such as diffusion through ion channels, biological cell populations and animal swarms. To derive the macroscopic model of such systems, previous studies have used ad hoc closure approximations, often generating errors. Instead, we provide a new systematic method based on matched asymptotic expansions to establish the link between the individual- and the population-level models. We begin by deriving the population-level model of a system of identical Brownian hard spheres. The result is a nonlinear diffusion equation for the one-particle density function with excluded-volume effects enhancing the overall collective diffusion rate. We then expand this core problem in several directions. First, for a system with two types of particles (two species) we obtain a nonlinear cross-diffusion model. This model captures both alternative notions of diffusion, the collective diffusion and the self-diffusion, and can be used to study diffusion through obstacles. Second, we study the diffusion of finite-size particles through confined domains such as a narrow channel or a Hele–Shaw cell. In this case the macroscopic model depends on a confinement parameter and interpolates between severe confinement (e.g., a single- file diffusion in the narrow channel case) and an unconfined situation. Finally, the analysis for diffusive soft spheres, particles with soft-core repulsive potentials, yields an interaction-dependent non-linear term in the diffusion equation.
414

Simulation numérique de feux de forêt avec réinitialisation et contournement d’obstacles

Desfossés Foucault, Alexandre 01 1900 (has links)
Ce travail présente une technique de simulation de feux de forêt qui utilise la méthode Level-Set. On utilise une équation aux dérivées partielles pour déformer une surface sur laquelle est imbriqué notre front de flamme. Les bases mathématiques de la méthode Level-set sont présentées. On explique ensuite une méthode de réinitialisation permettant de traiter de manière robuste des données réelles et de diminuer le temps de calcul. On étudie ensuite l’effet de la présence d’obstacles dans le domaine de propagation du feu. Finalement, la question de la recherche du point d’ignition d’un incendie est abordée. / This work presents a forest fire simulation model which uses the Level-Set method. We use a partial differential equation to deform a surface on which our flame front is inscribed. The mathematical foundations of the Level-set method are presented. We then explain a reinitialization method that allows us to treat in a robust way real data and to reduce the calculation time. The effect of the presence of barriers in the fire propagation domain is also studied. Finally, we make an attempt to find the ignition point of a forest fire.
415

The Global Stability of the Solution to the Morse Potential in a Catastrophic Regime

Pittayakanchit, Weerapat 01 January 2016 (has links)
Swarms of animals exhibit aggregations whose behavior is a challenge for mathematicians to understand. We analyze this behavior numerically and analytically by using the pairwise interaction model known as the Morse potential. Our goal is to prove the global stability of the candidate local minimizer in 1D found in A Primer of Swarm Equilibria. Using the calculus of variations and eigenvalues analysis, we conclude that the candidate local minimizer is a global minimum with respect to all solution smaller than its support. In addition, we manage to extend the global stability condition to any solutions whose support has a single component. We are still examining the local minimizers with multiple components to determine whether the candidate solution is the minimum-energy configuration.
416

An Applied Mathematics Approach to Modeling Inflammation: Hematopoietic Bone Marrow Stem Cells, Systemic Estrogen and Wound Healing and Gas Exchange in the Lungs and Body

Cooper, Racheal L 01 January 2015 (has links)
Mathematical models apply to a multitude physiological processes and are used to make predictions and analyze outcomes of these processes. Specifically, in the medical field, a mathematical model uses a set of initial conditions that represents a physiological state as input and a set of parameter values are used to describe the interaction between variables being modeled. These models are used to analyze possible outcomes, and assist physicians in choosing the most appropriate treatment options for a particular situation. We aim to use mathematical modeling to analyze the dynamics of processes involved in the inflammatory process. First, we create a model of hematopoiesis, the processes of creating new blood cells. We analyze stem cell collection regimens and statistically sample parameter space in order to create a model accounts for the dynamics of multiple patients. Next, we modify an existing model of the wound healing response by introducing a variable for two inflammatory cell types. We analyze the timing of the inflammatory response and introduce the presence of systemic estrogen in the model, as there is evidence that the presence of estrogen leads to a more efficient wound healing response. Last, we mathematically model the gas exchange process in the lungs and body in order to lay the foundation for a model of the inflammatory response in the lung under conditions of mechanical ventilation. We introduce normal and ventilation breathing waveforms and a third state of hemoglobin in a closed loop partial differential equations model. We account for gas exchange in the lung and body compartments in addition to introducing a third discretized well-mixing compartment between the two. We use ordinary and partial differential equations to model these systems over one or more independent variables, as well as classical analysis techniques and computational methods to analyze systems. Statistical sampling is also used to investigate parameter values in order for the mathematical models developed to account for patient-to-patient variability. This alters the traditional mathematical model, which yields a single set of parameter values that represent one instance of the physiology, into a mathematical model that accounts for many different instances of physiology.}
417

Calculus of variations and its application to liquid crystals

Bedford, Stephen James January 2014 (has links)
The thesis concerns the mathematical study of the calculus of variations and its application to liquid crystals. In the first chapter we examine vectorial problems in the calculus of variations with an additional pointwise constraint so that any admissible function <strong>n</strong> ε W<sup>1,1</sup>(ΩM), and M is a manifold of suitable regularity. We formulate necessary and sufficient conditions for any given state <strong>n</strong> to be a strong or weak local minimiser of I. This is achieved using a nearest point projection mapping in order to use the more classical results which apply in the absence of a constraint. In the subsequent chapters we study various static continuum theories of liquid crystals. More specifically we look to explain a particular cholesteric fingerprint pattern observed by HP Labs. We begin in Chapter 2 by focusing on a specific cholesteric liquid crystal problem using the theory originally derived by Oseen and Frank. We find the global minimisers for general elastic constants amongst admissible functions which only depend on a single variable. Using the one-constant approximation for the Oseen-Frank free energy, we then show that these states are global minimisers of the three-dimensional problem if the pitch of the cholesteric liquid crystal is sufficiently long. Chapter 3 concerns the application of the results from the first chapter to the situations investigated in the second. The local stability of the one-dimensional states are quantified, analytically and numerically, and in doing so we unearth potential shortcomings of the classical Oseen-Frank theory. In Chapter 4, we ascertain some equivalence results between the continuum theories of Oseen and Frank, Ericksen, and Landau and de Gennes. We do so by proving lifting results, building on the work of Ball and Zarnescu, which relate the regularity of line and vector fields. The results prove to be interesting as they show that for a director theory to respect the head to tail symmetry of the liquid crystal molecules, the appropriate function space for the director field is S BV<sup>2</sup> (Ω,S<sup>2,/sup>). We take this idea and in the final chapter we propose a mathematical model of liquid crystals based upon the Oseen-Frank free energy but using special functions of bounded variation. We establish the existence of a minimiser, forms of the Euler-Lagrange equation, and find solutions of the Euler-Lagrange equation in some simple cases. Finally we use our proposed model to re-examine the same problems from Chapter 2. By doing so we extend the analysis we were able to achieve using Sobolev spaces and predict the existence of multi-dimensional minimisers consistent with the known experimental properties of high-chirality cholesteric liquid crystals.
418

Numerical analysis of highly oscillatory Stochastic PDEs / Analyse numérique d'EDPS hautement oscillantes

Bréhier, Charles-Edouard 27 November 2012 (has links)
Dans une première partie, on s'intéresse à un système d'EDP stochastiques variant selon deux échelles de temps, et plus particulièrement à l'approximation de la composante lente à l'aide d'un schéma numérique efficace. On commence par montrer un principe de moyennisation, à savoir la convergence de la composante lente du système vers la solution d'une équation dite moyennée. Ensuite on prouve qu'un schéma numérique de type Euler fournit une bonne approximation d'un coefficient inconnu apparaissant dans cette équation moyennée. Finalement, on construit et on analyse un schéma de discrétisation du système à partir des résultats précédents, selon la méthodologie dite HMM (Heterogeneous Multiscale Method). On met en évidence l'ordre de convergence par rapport au paramètre d'échelle temporelle et aux différents paramètres du schéma numérique- on étudie les convergences au sens fort (approximation des trajectoires) et au sens faible (approximation des lois). Dans une seconde partie, on étudie une méthode d'approximation de solutions d'EDP paraboliques, en combinant une approche semi-lagrangienne et une discrétisation de type Monte-Carlo. On montre d'abord dans un cas simplifié que la variance dépend des pas de discrétisation- enfin on fournit des simulations numériques de solutions, afin de mettre en avant les applications possibles d'une telle méthode. / In a first part, we are interested in the behavior of a system of Stochastic PDEs with two time-scales- more precisely, we focus on the approximation of the slow component thanks to an efficient numerical scheme. We first prove an averaging principle, which states that the slow component converges to the solution of the so-called averaged equation. We then show that a numerical scheme of Euler type provides a good approximation of an unknown coefficient appearing in the averaged equation. Finally, we build and we analyze a discretization scheme based on the previous results, according to the HMM methodology (Heterogeneous Multiscale Method). We precise the orders of convergence with respect to the time-scale parameter and to the parameters of the numerical discretization- we study the convergence in a strong sense - approximation of the trajectories - and in a weak sense - approximation of the laws. In a second part, we study a method for approximating solutions of parabolic PDEs, which combines a semi-lagrangian approach and a Monte-Carlo discretization. We first show in a simplified situation that the variance depends on the discretization steps. We then provide numerical simulations of solutions, in order to show some possible applications of such a method.
419

Bifurkace v matematických modelech v biologii / Bifurcation in mathematical models in biology

Kozák, Michal January 2013 (has links)
Stationary, spatially inhomogenous solutions of reaction-diffusion systems are studied in this thesis. These systems appears in biological models based on a Tu- ring's idea of a diffusion driven instability. In the connection, a global behaviour of bifurcation branches of these stationary solutions is analyzed. The thesis in- sists on theory of differential equations and on (particularly topological) methods of nonlinear analysis. The existence, as well as non-compatness in one-dimensional space, of a bifurcation branch of general reaction-diffusion system leading to Tu- ring's efekt is proved. Further, a priori estimates of Thomas model are derived. The results tend to theorem, that forall diffusion coefficient from the preestab- lished set there exists at least one stacionary, spacially nontrivial solution of Tho- mas model.
420

Some new results concerning general weighted regular Sturm-Liouville problems

Kikonko, Mervis January 2016 (has links)
In this PhD thesis we study some weighted regular Sturm-Liouville problems in which the weight function takes on both positive and negative signs in an appropriate interval [a,b]. With such  problems there is the possible existence of non-real eigenvalues, unlike in the definite case (i.e. left or right definite) in which only real eigenvalues exist. This PhD thesis consists of five papers (papers A-E) and an introduction to this area, which puts these papers into a more general frame. In paper A we give some precise estimates on the Richardson number for the two turning point case, thereby complementing the work of Jabon and Atkinson from 1984 in an essential way. We also give a corrected version of their result since there seems to be a typographical error in their paper. In paper B we show that the interlacing property, which holds in the one turning point case, does not hold in the two turning point case. The paper consists of a detailed presentation of numerical results of the case in which the weight function is allowed to change its sign twice in the interval (-1, 2). We also present some theoretical results which support the numerical results. Moreover, a number of new open questions are raised. We also observe that the real and imaginary parts of a non-real eigenfunction either have the same number of zeros in the interval (-1,2) or the numbers of zeros differ by two. In paper C, we obtain bounds on real and imaginary parts of non-real eigenvalues of a non-definite Sturm-Liouville problem, with Dirichlet boundary conditions, thus complementing the results obtained in a paper byBehrndt et.al. from 2013 in an essential way. In paper D we obtain a lower bound on the eigenvalue of the smallest modulus associated with a Dirichlet problem in the general case of a regular Sturm-Liouville problem. In paper E we expand upon the basic oscillation theory for general boundary problems of the form   -y''+q(x)y=λw(x)y,  on  I = [a,b], where  q(x) and w(x) are real-valued continuous functions on [a,b] and y is required to satisfy a pair of homogeneous separated boundary conditions at the end-points. Already in 1918 Richardson proved that, in the case of the Dirichlet problem,  if w(x) changes its sign exactly once and the boundary problem is  non-definite, then the zeros of the real and imaginary parts of any non-real eigenfunction interlace. We show that, unfortunately, this result is false in the case of two turning points, thus removing any hope for a general separation theorem for the zeros of the non-real eigenfunctions. Furthermore, we show that when a non-real eigenfunction vanishes inside I, then the absolute value of the difference between the total number of zeros of its real and imaginary parts is exactly 2.

Page generated in 0.1238 seconds