• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 275
  • 120
  • 70
  • 24
  • 12
  • 5
  • 5
  • 5
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 715
  • 715
  • 715
  • 168
  • 154
  • 139
  • 127
  • 126
  • 124
  • 103
  • 101
  • 100
  • 93
  • 93
  • 83
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
451

Theoretical Models for Wall Injected Duct Flows

Saad, Tony 01 May 2010 (has links)
This dissertation is concerned with the mathematical modeling of the flow in a porous cylinder with a focus on applications to solid rocket motors. After discussing the historical development and major contributions to the understanding of wall injected flows, we present an inviscid rotational model for solid and hybrid rockets with arbitrary headwall injection. Then, we address the problem of pressure integration and find that for a given divergence free velocity field, unless the vorticity transport equation is identically satisfied, one cannot find an analytic expression for the pressure by direct integration of the Navier-Stokes equations. This is followed by the application of a variational procedure to seek novel solutions with varying levels of kinetic energies. These are found to cover a wide spectrum of admissible motions ranging from purely irrotational to highly rotational fields. Subsequently, a second law analysis as well as an extension of Kelvin's energy theorem to open boundaries are presented to verify and corroborate the variational model. Finally, the focus is shifted to address the problem of laminar viscous flow in a porous cylinder with regressing walls. This is tackled using two different analytical techniques, namely, perturbation and decomposition. Comparisons with numerical Runge--Kutta solutions are also provided for a variety of wall Reynolds numbers and wall regression speeds.
452

A TIME-AND-SPACE PARALLELIZED ALGORITHM FOR THE CABLE EQUATION

Li, Chuan 01 August 2011 (has links)
Electrical propagation in excitable tissue, such as nerve fibers and heart muscle, is described by a nonlinear diffusion-reaction parabolic partial differential equation for the transmembrane voltage $V(x,t)$, known as the cable equation. This equation involves a highly nonlinear source term, representing the total ionic current across the membrane, governed by a Hodgkin-Huxley type ionic model, and requires the solution of a system of ordinary differential equations. Thus, the model consists of a PDE (in 1-, 2- or 3-dimensions) coupled to a system of ODEs, and it is very expensive to solve, especially in 2 and 3 dimensions. In order to solve this equation numerically, we develop an algorithm, extended from the Parareal Algorithm, to efficiently incorporate space-parallelized solvers into the framework of the Parareal algorithm, to achieve time-and-space parallelization. Numerical results and comparison of the performance of several serial, space-parallelized and time-and-space-parallelized time-stepping numerical schemes in one-dimension and in two-dimensions are also presented.
453

Analytical Computation of Proper Orthogonal Decomposition Modes and n-Width Approximations for the Heat Equation with Boundary Control

Fernandez, Tasha N. 01 December 2010 (has links)
Model reduction is a powerful and ubiquitous tool used to reduce the complexity of a dynamical system while preserving the input-output behavior. It has been applied throughout many different disciplines, including controls, fluid and structural dynamics. Model reduction via proper orthogonal decomposition (POD) is utilized for of control of partial differential equations. In this thesis, the analytical expressions of POD modes are derived for the heat equation. The autocorrelation function of the latter is viewed as the kernel of a self adjoint compact operator, and the POD modes and corresponding eigenvalues are computed by solving homogeneous integral equations of the second kind. The computed POD modes are compared to the modes obtained from snapshots for both the one-dimensional and two-dimensional heat equation. Boundary feedback control is obtained through reduced-order POD models of the heat equation and the effectiveness of reduced-order control is compared to the full-order control. Moreover, the explicit computation of the POD modes and eigenvalues are shown to allow the computation of different n-widths approximations for the heat equation, including the linear, Kolmogorov, Gelfand, and Bernstein n-widths.
454

On the pricing equations of some path-dependent options

Eriksson, Jonatan January 2006 (has links)
This thesis consists of four papers and a summary. The common topic of the included papers are the pricing equations of path-dependent options. Various properties of barrier options and American options are studied, such as convexity of option prices, the size of the continuation region in American option pricing and pricing formulas for turbo warrants. In Paper I we study the effect of model misspecification on barrier option pricing. It turns out that, as in the case of ordinary European and American options, this is closely related to convexity properties of the option prices. We show that barrier option prices are convex under certain conditions on the contract function and on the relation between the risk-free rate of return and the dividend rate. In Paper II a new condition is given to ensure that the early exercise feature in American option pricing has a positive value. We give necessary and sufficient conditions for the American option price to coincide with the corresponding European option price in at least one diffusion model. In Paper III we study parabolic obstacle problems related to American option pricing and in particular the size of the non-coincidence set. The main result is that if the boundary of the set of points where the obstacle is a strict subsolution to the differential equation is C1-Dini in space and Lipschitz in time, there is a positive distance, which is uniform in space, between the boundary of this set and the boundary of the non-coincidence set. In Paper IV we derive explicit pricing formulas for turbo warrants under the classical Black-Scholes assumptions.
455

Model Reduction and Parameter Estimation for Diffusion Systems

Bhikkaji, Bharath January 2004 (has links)
Diffusion is a phenomenon in which particles move from regions of higher density to regions of lower density. Many physical systems, in fields as diverse as plant biology and finance, are known to involve diffusion phenomena. Typically, diffusion systems are modeled by partial differential equations (PDEs), which include certain parameters. These parameters characterize a given diffusion system. Therefore, for both modeling and simulation of a diffusion system, one has to either know or determine these parameters. Moreover, as PDEs are infinite order dynamic systems, for computational purposes one has to approximate them by a finite order model. In this thesis, we investigate these two issues of model reduction and parameter estimation by considering certain specific cases of heat diffusion systems. We first address model reduction by considering two specific cases of heat diffusion systems. The first case is a one-dimensional heat diffusion across a homogeneous wall, and the second case is a two-dimensional heat diffusion across a homogeneous rectangular plate. In the one-dimensional case we construct finite order approximations by using some well known PDE solvers and evaluate their effectiveness in approximating the true system. We also construct certain other alternative approximations for the one-dimensional diffusion system by exploiting the different modal structures inherently present in it. For the two-dimensional heat diffusion system, we construct finite order approximations first using the standard finite difference approximation (FD) scheme, and then refine the FD approximation by using its asymptotic limit. As for parameter estimation, we consider the same one-dimensional heat diffusion system, as in model reduction. We estimate the parameters involved, first using the standard batch estimation technique. The convergence of the estimates are investigated both numerically and theoretically. We also estimate the parameters of the one-dimensional heat diffusion system recursively, initially by adopting the standard recursive prediction error method (RPEM), and later by using two different recursive algorithms devised in the frequency domain. The convergence of the frequency domain recursive estimates is also investigated.
456

Nodale Spektralelemente und unstrukturierte Gitter - Methodische Aspekte und effiziente Algorithmen

Fladrich, Uwe 23 October 2012 (has links) (PDF)
Die Dissertation behandelt methodische und algorithmische Aspekte der Spektralelementemethode zur räumlichen Diskretisierung partieller Differentialgleichungen. Die Weiterentwicklung einer symmetriebasierten Faktorisierung ermöglicht effiziente Operatoren für Tetraederelemente. Auf Grundlage einer umfassenden Leistungsanalyse werden Engpässe in der Implementierung der Operatoren identifiziert und durch algorithmische Modifikationen der Methode eliminiert.
457

The evolution equations for Dirac-harmonic Maps

Branding, Volker January 2012 (has links)
This thesis investigates the gradient flow of Dirac-harmonic maps. Dirac-harmonic maps are critical points of an energy functional that is motivated from supersymmetric field theories. The critical points of this energy functional couple the equation for harmonic maps with spinor fields. At present, many analytical properties of Dirac-harmonic maps are known, but a general existence result is still missing. In this thesis the existence question is studied using the evolution equations for a regularized version of Dirac-harmonic maps. Since the energy functional for Dirac-harmonic maps is unbounded from below the method of the gradient flow cannot be applied directly. Thus, we first of all consider a regularization prescription for Dirac-harmonic maps and then study the gradient flow. Chapter 1 gives some background material on harmonic maps/harmonic spinors and summarizes the current known results about Dirac-harmonic maps. Chapter 2 introduces the notion of Dirac-harmonic maps in detail and presents a regularization prescription for Dirac-harmonic maps. In Chapter 3 the evolution equations for regularized Dirac-harmonic maps are introduced. In addition, the evolution of certain energies is discussed. Moreover, the existence of a short-time solution to the evolution equations is established. Chapter 4 analyzes the evolution equations in the case that the domain manifold is a closed curve. Here, the existence of a smooth long-time solution is proven. Moreover, for the regularization being large enough, it is shown that the evolution equations converge to a regularized Dirac-harmonic map. Finally, it is discussed in which sense the regularization can be removed. In Chapter 5 the evolution equations are studied when the domain manifold is a closed Riemmannian spin surface. For the regularization being large enough, the existence of a global weak solution, which is smooth away from finitely many singularities is proven. It is shown that the evolution equations converge weakly to a regularized Dirac-harmonic map. In addition, it is discussed if the regularization can be removed in this case. / Die vorliegende Dissertation untersucht den Gradientenfluss von Dirac-harmonischen Abbildungen. Dirac-harmonische Abbildungen sind kritische Punkte eines Energiefunktionals, welches aus supersymmetrischen Feldtheorien motiviert ist. Die kritischen Punkte dieses Energiefunktionals koppeln die Gleichung für harmonische Abbildungen mit Spinorfeldern. Viele analytische Eigenschaften von Dirac-harmonischen Abbildungen sind bereits bekannt, ein allgemeines Existenzresultat wurde aber noch nicht erzielt. Diese Dissertation untersucht das Existenzproblem, indem der Gradientenfluss von einer regularisierten Version Dirac-harmonischer Abbildungen untersucht wird. Die Methode des Gradientenflusses kann nicht direkt angewendet werden, da das Energiefunktional für Dirac-harmonische Abbildungen nach unten unbeschränkt ist. Daher wird zunächst eine Regularisierungsvorschrift für Dirac-harmonische Abbildungen eingeführt und dann der Gradientenfluss betrachtet. Kapitel 1 stellt für die Arbeit wichtige Resultate über harmonische Abbildungen/harmonische Spinoren zusammen. Außerdem werden die zur Zeit bekannten Resultate über Dirac-harmonische Abbildungen zusammengefasst. In Kapitel 2 werden Dirac-harmonische Abbildungen im Detail eingeführt, außerdem wird eine Regularisierungsvorschrift präsentiert. Kapitel 3 führt die Evolutionsgleichungen für regularisierte Dirac-harmonische Abbildungen ein. Zusätzlich wird die Evolution von verschiedenen Energien diskutiert. Schließlich wird die Existenz einer Kurzzeitlösung bewiesen. In Kapitel 4 werden die Evolutionsgleichungen für den Fall analysiert, dass die Ursprungsmannigfaltigkeit eine geschlossene Kurve ist. Die Existenz einer Langzeitlösung der Evolutionsgleichungen wird bewiesen. Es wird außerdem gezeigt, dass die Evolutionsgleichungen konvergieren, falls die Regularisierung groß genug gewählt wurde. Schließlich wird diskutiert, ob die Regularisierung wieder entfernt werden kann. Kapitel 5 schlussendlich untersucht die Evolutionsgleichungen für den Fall, dass die Ursprungsmannigfaltigkeit eine geschlossene Riemannsche Spin Fläche ist. Es wird die Existenz einer global schwachen Lösung bewiesen, welche bis auf endlich viele Singularitäten glatt ist. Die Lösung konvergiert im schwachen Sinne gegen eine regularisierte Dirac-harmonische Abbildung. Auch hier wird schließlich untersucht, ob die Regularisierung wieder entfernt werden kann.
458

H-∞ optimal actuator location

Kasinathan, Dhanaraja January 2012 (has links)
There is often freedom in choosing the location of actuators on systems governed by partial differential equations. The actuator locations should be selected in order to optimize the performance criterion of interest. The main focus of this thesis is to consider H-∞-performance with state-feedback. That is, both the controller and the actuator locations are chosen to minimize the effect of disturbances on the output of a full-information plant. Optimal H-∞-disturbance attenuation as a function of actuator location is used as the cost function. It is shown that the corresponding actuator location problem is well-posed. In practice, approximations are used to determine the optimal actuator location. Conditions for the convergence of optimal performance and the corresponding actuator location to the exact performance and location are provided. Examples are provided to illustrate that convergence may fail when these conditions are not satisfied. Systems of large model order arise in a number of situations; including approximation of partial differential equation models and power systems. The system descriptions are sparse when given in descriptor form but not when converted to standard first-order form. Numerical calculation of H-∞-attenuation involves iteratively solving large H-∞-algebraic Riccati equations (H-∞-AREs) given in the descriptor form. An iterative algorithm that preserves the sparsity of the system description to calculate the solutions of large H-∞-AREs is proposed. It is shown that the performance of our proposed algorithm is similar to a Schur method in many cases. However, on several examples, our algorithm is both faster and more accurate than other methods. The calculation of H-∞-optimal actuator locations is an additional layer of optimization over the calculation of optimal attenuation. An optimization algorithm to calculate H-∞-optimal actuator locations using a derivative-free method is proposed. The results are illustrated using several examples motivated by partial differential equation models that arise in control of vibration and diffusion.
459

Validated Continuation for Infinite Dimensional Problems

Lessard, Jean-Philippe 07 August 2007 (has links)
Studying the zeros of a parameter dependent operator F defined on a Hilbert space H is a fundamental problem in mathematics. When the Hilbert space is finite dimensional, continuation provides, via predictor-corrector algorithms, efficient techniques to numerically follow the zeros of F as we move the parameter. In the case of infinite dimensional Hilbert spaces, this procedure must be applied to some finite dimensional approximation which of course raises the question of validity of the output. We introduce a new technique that combines the information obtained from the predictor-corrector steps with ideas from rigorous computations and verifies that the numerically produced zero for the finite dimensional system can be used to explicitly define a set which contains a unique zero for the infinite dimensional problem F: HxR->Im(F). We use this new validated continuation to study equilibrium solutions of partial differential equations, to prove the existence of chaos in ordinary differential equations and to follow branches of periodic solutions of delay differential equations. In the context of partial differential equations, we show that the cost of validated continuation is less than twice the cost of the standard continuation method alone.
460

Parallel Multilevel Preconditioners for Problems of Thin Smooth Shells

Thess, M. 30 October 1998 (has links) (PDF)
In the last years multilevel preconditioners like BPX became more and more popular for solving second-order elliptic finite element discretizations by iterative methods. P. Oswald has adapted these methods for discretizations of the fourth order biharmonic problem by rectangular conforming Bogner-Fox-Schmidt elements and nonconforming Adini elements and has derived optimal estimates for the condition numbers of the preconditioned linear systems. In this paper we generalize the results from Oswald to the construction of BPX and Multilevel Diagonal Scaling (MDS-BPX) preconditioners for the elasticity problem of thin smooth shells of arbitrary forms where we use Koiter's equations of equilibrium for an homogeneous and isotropic thin shell, clamped on a part of its boundary and loaded by a resultant on its middle surface. We use the two discretizations mentioned above and the preconditioned conjugate gradient method as iterative method. The parallelization concept is based on a non-overlapping domain decomposition data structure. We describe the implementations of the multilevel preconditioners. Finally, we show numerical results for some classes of shells like plates, cylinders, and hyperboloids.

Page generated in 0.1101 seconds