Spelling suggestions: "subject:"1article swarm optimization"" "subject:"1article awarm optimization""
91 |
Spacecraft Trajectory Optimization Suite (STOPS): Optimization of Low-Thrust Interplanetary Spacecraft Trajectories Using Modern Optimization TechniquesSheehan, Shane P 01 September 2017 (has links)
The work presented here is a continuation of Spacecraft Trajectory Optimization Suite (STOpS), a master’s thesis written by Timothy Fitzgerald at California Polytechnic State University, San Luis Obispo. Low-thrust spacecraft engines are becoming much more common due to their high efficiency, especially for interplanetary trajectories. The version of STOpS presented here optimizes low-thrust trajectories using the Island Model Paradigm with three stochastic evolutionary algorithms: the genetic algorithm, differential evolution, and particle swarm optimization. While the algorithms used here were designed for the original STOpS, they were modified for this work.
The low-thrust STOpS was successfully validated with two trajectory problems and their known near-optimal solutions. The first verification case was a constant-thrust, variable-time Earth orbit to Mars orbit transfer where the thrust was 3.787 Newtons and the time was approximately 195 days. The second verification case was a variable-thrust, constant-time Earth orbit to Mercury orbit transfer with the thrust coming from a solar electric propulsion model equation and the time being 355 days. Low-thrust STOpS found similar near-optimal solutions in each case. The final result of this work is a versatile MATLAB tool for optimizing low-thrust interplanetary trajectories.
|
92 |
Vícepásmová magnetická anténa / Multiband magnetic antennaRyšánek, Martin January 2010 (has links)
The thesis deals with a parametric analysis of a magnetic multiband antenna and explains the principle of its operation. In the thesis, an optimization of the antenna by the particle swarm optimization is performed in order to meet impedance matching in prescribed frequency bands.
|
93 |
Optimalizace investičního portfolia pomocí metaheuristiky / Portfolio Optimization Using MetaheuristicsHaviar, Martin January 2015 (has links)
This thesis deals with design and implementation of an investment model, which applies methods of Post-modern portfolio theory. Particle swarm optimization (PSO) metaheuristic was used for portfolio optimization and the parameters were analyzed with several experiments. Johnsons SU distribution was used for estimation of future returns as it proved to be the best of analyzed distributions. The result is software application written in Python, which is tested for stability and performance of model in extreme situations.
|
94 |
An Analysis of Overfitting in Particle Swarm Optimised Neural Networksvan Wyk, Andrich Benjamin January 2014 (has links)
The phenomenon of overfitting, where a feed-forward neural network (FFNN) over trains
on training data at the cost of generalisation accuracy is known to be speci c to the
training algorithm used. This study investigates over tting within the context of particle
swarm optimised (PSO) FFNNs. Two of the most widely used PSO algorithms are
compared in terms of FFNN accuracy and a description of the over tting behaviour is
established. Each of the PSO components are in turn investigated to determine their
e ect on FFNN over tting. A study of the maximum velocity (Vmax) parameter is
performed and it is found that smaller Vmax values are optimal for FFNN training. The
analysis is extended to the inertia and acceleration coe cient parameters, where it is
shown that speci c interactions among the parameters have a dominant e ect on the
resultant FFNN accuracy and may be used to reduce over tting. Further, the signi cant
e ect of the swarm size on network accuracy is also shown, with a critical range being
identi ed for the swarm size for e ective training. The study is concluded with an
investigation into the e ect of the di erent activation functions. Given strong empirical
evidence, an hypothesis is made that stating the gradient of the activation function
signi cantly a ects the convergence of the PSO. Lastly, the PSO is shown to be a very
effective algorithm for the training of self-adaptive FFNNs, capable of learning from
unscaled data. / Dissertation (MSc)--University of Pretoria, 2014. / tm2015 / Computer Science / MSc / Unrestricted
|
95 |
Particle swarm optimization : empirical and theoretical stability analysisCleghorn, Christopher Wesley January 2017 (has links)
Particle swarm optimization (PSO) is a well-known stochastic population-based search algorithm,
originally developed by Kennedy and Eberhart in 1995. Given PSO's success at solving numerous real world problems, a large number of PSO variants have been proposed. However, unlike the original PSO, most variants currently have little to no existing theoretical results. This lack of a theoretical underpinning makes it difficult, if not impossible, for practitioners to make informed decisions about the algorithmic setup. This thesis focuses on the criteria needed for particle stability, or as it is often refereed to as, particle convergence.
While new PSO variants are proposed at a rapid rate, the theoretical analysis often takes substantially longer to emerge, if at all. In some situation the theoretical analysis is not performed as the mathematical models needed to actually represent the PSO variants become too complex or contain intractable subproblems. It is for this reason that a rapid means of determining approximate stability criteria that does not require complex mathematical modeling is needed. This thesis presents an empirical approach for determining the stability criteria for PSO variants. This approach is designed to provide a real world depiction of particle stability by imposing absolutely no simplifying assumption on the underlying PSO variant being investigated. This approach is utilized to identify a number of previously unknown stability criteria.
This thesis also contains novel theoretical derivations of the stability criteria for both the fully informed PSO and the unified PSO. The theoretical models are then empirically validated utilizing the aforementioned empirical approach in an assumption free context.
The thesis closes with a substantial theoretical extension of current PSO stability research. It is common practice within the existing theoretical PSO research to assume that, in the simplest case, the personal and neighborhood best positions are stagnant. However, in this thesis, stability criteria are derived under a mathematical model where by the personal best and neighborhood best positions are treated as convergent sequences of random variables. It is also proved that, in order to derive stability criteria, no weaker assumption on the behavior of the personal and neighborhood best positions can be made. The theoretical extension presented caters for a large range of PSO variants. / Thesis (PhD)--University of Pretoria, 2017. / Computer Science / PhD / Unrestricted
|
96 |
A Hierarchical Particle Swarm Optimizer and Its Adaptive VariantJanson, Stefan, Middendorf, Martin 05 February 2019 (has links)
Ahierarchical version of the particle swarm optimization (PSO) metaheuristic is introduced in this paper. In the new method called H-PSO, the particles are arranged in a dynamic hierarchy that is used to define a neighborhood structure. Depending on the quality of their so-far best-found solution, the particles move up or down the hierarchy. This gives good particles that move up in the hierarchy a larger influence on the swarm. We introduce a variant of H-PSO, in which the shape of the hierarchy is dynamically adapted during the execution of the algorithm. Another variant is to assign different behavior to the individual particles with respect to their level in the hierarchy. H-PSO and its variants are tested on a commonly used set of optimization functions and are compared to PSO using different standard neighborhood schemes.
|
97 |
Multi-Objective Optimization of Plug-In HEV Powertrain Using Modified Particle Swarm OptimizationParkar, Omkar 05 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / An increase in the awareness of environmental conservation is leading the automotive industry into the adaptation of alternatively fueled vehicles. Electric, Fuel-Cell as well as Hybrid-Electric vehicles focus on this research area with the aim to efficiently utilize vehicle powertrain as the first step. Energy and Power Management System control strategies play a vital role in improving the efficiency of any hybrid propulsion system. However, these control strategies are sensitive to the dynamics of the powertrain components used in the given system. A kinematic mathematical model for Plug-in Hybrid Electric Vehicle (PHEV) has been developed in this study and is further optimized by determining optimal power management strategy for minimal fuel consumption as well as NOx emissions while executing a set drive cycle. A multi-objective optimization using weighted sum formulation is needed in order to observe the trade-off between the optimized objectives. Particle Swarm Optimization (PSO) algorithm has been used in this research, to determine the trade-off curve between fuel and NOx. In performing these optimizations, the control signal consisting of engine speed and reference battery SOC trajectory for a 2-hour cycle is used as the controllable decision parameter input directly from the optimizer. Each element of the control signal was split into 50 distinct points representing the full 2 hours, giving slightly less than 2.5 minutes per point, noting that the values used in the model are interpolated between the points for each time step. With the control signal consisting of 2 distinct signals, speed, and SOC trajectory, as 50 element time-variant signals, a multidimensional problem was formulated for the optimizer. Novel approaches to balance the optimizer exploration and convergence, as well as seeding techniques are suggested to solve the optimal control problem. The optimization of each involved individual runs at 5 different weight levels with the resulting cost populations being compiled together to visually represent with the help of Pareto front development. The obtained results of simulations and optimization are presented involving performances of individual components of the PHEV powertrain as well as the optimized PMS strategy to follow for a given drive cycle. Observations of the trade-off are discussed in the case of Multi-Objective Optimizations.
|
98 |
Evolutionary Optimization Algorithms for Nonlinear SystemsRaj, Ashish 01 May 2013 (has links)
Many real world problems in science and engineering can be treated as optimization problems with multiple objectives or criteria. The demand for fast and robust stochastic algorithms to cater to the optimization needs is very high. When the cost function for the problem is nonlinear and non-differentiable, direct search approaches are the methods of choice. Many such approaches use the greedy criterion, which is based on accepting the new parameter vector only if it reduces the value of the cost function. This could result in fast convergence, but also in misconvergence where it could lead the vectors to get trapped in local minima. Inherently, parallel search techniques have more exploratory power. These techniques discourage premature convergence and consequently, there are some candidate solution vectors which do not converge to the global minimum solution at any point of time. Rather, they constantly explore the whole search space for other possible solutions. In this thesis, we concentrate on benchmarking three popular algorithms: Real-valued Genetic Algorithm (RGA), Particle Swarm Optimization (PSO), and Differential Evolution (DE). The DE algorithm is found to out-perform the other algorithms in fast convergence and in attaining low-cost function values. The DE algorithm is selected and used to build a model for forecasting auroral oval boundaries during a solar storm event. This is compared against an established model by Feldstein and Starkov. As an extended study, the ability of the DE is further put into test in another example of a nonlinear system study, by using it to study and design phase-locked loop circuits. In particular, the algorithm is used to obtain circuit parameters when frequency steps are applied at the input at particular instances.
|
99 |
Novel Semi-Supervised Learning Models to Balance Data Inclusivity and Usability in Healthcare ApplicationsJanuary 2019 (has links)
abstract: Semi-supervised learning (SSL) is sub-field of statistical machine learning that is useful for problems that involve having only a few labeled instances with predictor (X) and target (Y) information, and abundance of unlabeled instances that only have predictor (X) information. SSL harnesses the target information available in the limited labeled data, as well as the information in the abundant unlabeled data to build strong predictive models. However, not all the included information is useful. For example, some features may correspond to noise and including them will hurt the predictive model performance. Additionally, some instances may not be as relevant to model building and their inclusion will increase training time and potentially hurt the model performance. The objective of this research is to develop novel SSL models to balance data inclusivity and usability. My dissertation research focuses on applications of SSL in healthcare, driven by problems in brain cancer radiomics, migraine imaging, and Parkinson’s Disease telemonitoring.
The first topic introduces an integration of machine learning (ML) and a mechanistic model (PI) to develop an SSL model applied to predicting cell density of glioblastoma brain cancer using multi-parametric medical images. The proposed ML-PI hybrid model integrates imaging information from unbiopsied regions of the brain as well as underlying biological knowledge from the mechanistic model to predict spatial tumor density in the brain.
The second topic develops a multi-modality imaging-based diagnostic decision support system (MMI-DDS). MMI-DDS consists of modality-wise principal components analysis to incorporate imaging features at different aggregation levels (e.g., voxel-wise, connectivity-based, etc.), a constrained particle swarm optimization (cPSO) feature selection algorithm, and a clinical utility engine that utilizes inverse operators on chosen principal components for white-box classification models.
The final topic develops a new SSL regression model with integrated feature and instance selection called s2SSL (with “s2” referring to selection in two different ways: feature and instance). s2SSL integrates cPSO feature selection and graph-based instance selection to simultaneously choose the optimal features and instances and build accurate models for continuous prediction. s2SSL was applied to smartphone-based telemonitoring of Parkinson’s Disease patients. / Dissertation/Thesis / Doctoral Dissertation Industrial Engineering 2019
|
100 |
Real-time estimation of state-of-charge using particle swarm optimization on the electro-chemical model of a single cellChandra Shekar, Arun 05 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Accurate estimation of State of Charge (SOC) is crucial. With the ever-increasing usage of batteries, especially in safety critical applications, the requirement of accurate estimation of SOC is paramount. Most current methods of SOC estimation rely on data collected and calibrated offline, which could lead to inaccuracies in SOC estimation as the battery ages or under different operating conditions. This work aims at exploring the real-time estimation and optimization of SOC by applying Particle Swarm Optimization (PSO) to a detailed electrochemical model of a single cell. The goal is to develop a single cell model and PSO algorithm which can run on an embedded device with reasonable utilization of CPU and memory resources and still be able to estimate SOC with acceptable accuracy. The scope is to demonstrate the accurate estimation of SOC for 1C charge and discharge for both healthy and aged cell.
|
Page generated in 0.131 seconds