• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 4
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analyses of Particulate Contaminants in Semiconductor Processing Fluids

Xu, Daxue 08 1900 (has links)
Particle contamination control is a critical issue for the semiconductor industry. In the near future, this industry will be concerned with the chemical identities of contaminant particles as small as 0.01 pm in size. Therefore, analytical techniques with both high chemical sensitivity and spatial resolution are required. Transmission electron microscopy (TEM) provides excellent spatial resolution and yields structural and compositional information. It is rarely used, however, due to the difficulty of sample preparation. The goals of this research are to promote the use of TEM as an ultrafine particle analysis tool by developing new sample preparation methods, and to exploit the new TEM techniques for analysis of particles in semiconductor processing fluids. A TEM methodology for the analysis of particulate contaminants in fluids with an elemental detectability limit as low as 0.1 part per trillion (ppt), and a particle concentration detectability limit as low as 1 particle/ml for particles greater than 0.2 pm was developed and successfully applied to the analysis of particles in HF, H202, de-ionized (DI) water, and on the surface of an electronic device. HF samples from three manufacturers were examined. For HF (B), the maximum particle concentration was 8.3 x 103 particles/ml. Both a viscous material and lath-shaped particles were observed. The Sb concentration was less than 0.6 part per billion (ppb). HF (C) was the cleanest. CaF2 and TiO2 particles were identified in HF (D). For H2 02, iron and tin oxides and hydroxides were identified. The maximum particle concentration was 990 particles/ml. The Sn and Fe concentrations were less than 0.3 ppb. Spherical and dendritic particles were observed. For DI water, spherical and dendritic particles (<2 particles/ml), and particles containing Fe or Si with concentrations less than 0.1 ppt were observed. Contaminants on an electronic device surface were also analyzed. Clusters of small particles were determined to be a mixture of aluminum oxides and aluminum silicates.
2

Six Sigma for quality assurance of Lithium-ion batteries in the cell assembly process : A DMAIC field study at Northvolt / Sex Sigma för kvalitetssäkring av Litium-jon batteriers cellmonteringsprocess : En fältstudie enligt DMAIC på Northvolt

Mostafaee, Mani January 2021 (has links)
Lack of technical cleanliness and particle contaminations in Lithium-ion battery manufacturing affect the performance of batteries which are a risk for the safety and quality of the product. Therefore, part of the manufacturing process occurs inside the Clean and Dry room area to maintain technical cleanliness. This paper aims to provide a framework to control particle contamination inside the Clean and Dry room and strengthen the product's quality and safety. A literature study was conducted, which was completed by a field study at Northvolt Labs in Västerås to achieve the study's aims. The study contributes to existing theories by providing a framework to find root causes of particle contamination in the manufacturing process based on the existing literature and standards. The Six Sigma problem-solving methodology DMAIC was implemented to conduct the field study. A risk assessment was conducted to find the possible threats toward technical cleanliness in the cell assembly process. The risk sources were identified by implementing measurement methods from relevant standards. The results indicate a high risk for technical cleanliness are coming from the decontamination method, material, machines, and environment. Furthermore, several recommendations were given that are expected to decrease the amount of nonconformity in the process. / Brist på teknisk renhet och partikelföroreningar vid tillverkning av litiumjonbatterier påverkar dess prestanda och utgör en risk för produktens säkerhet och kvalitet. Därför sker en del av tillverkningsprocessen i ett Clean &amp; Dry rum för att upprätthålla teknisk renhet. Denna uppsats syftar till att ge ett ramverk för att kontrollera partikelföroreningar och därmed stärka produktens kvalitet och säkerhet. För att uppnå syftet genomfördes först en litteraturstudie vilket vidare kompletterades med en fältstudie vid Northvolt Labs i Västerås. Studien bidrar till befintliga teorier genom att tillhandahålla ett ramverk för att hitta och åtgärda rotorsaker till partikelkontaminering i tillverkningsprocessen baserat på befintlig litteratur och standarder. Sex Sigma problemlösningsmetoden DMAIC implementerades för att genomföra fältstudien. En riskbedömning genomfördes för att hitta riskfyllda aktiviteter i processen. Vidare implementerades mätmetoder från relevanta standarder för att mäta kontamineringsnivån. Resultaten indikerar stor risk för tekniskrenhet från saneringsmetoder, material, maskiner och miljön. Vidare rekommenderas flera åtgärder för att underhålla tekniskrenhet vilka förväntas minska avvikelser i processen.
3

Optimizing hydraulic reservoirs using euler-eulerlagrange multiphase cfd simulation

Muttenthaler, Lukas, Manhartsgruber, Bernhard 25 June 2020 (has links)
Well working hydraulic systems need clean hydraulic oil. Therefore, the system must ensure the separation of molecular, gaseous, liquid and solid contaminations. The key element of the separation of contaminants is the hydraulic reservoir. Solid particles are a major source of maintenance costs and machine downtime. Thus, an Euler-Euler-Lagrange multiphase CFD model to predict the transport of solid particles in hydraulic reservoirs was developed. The CFD model identifies and predicts the particle accumulation areas and is used to train port-to-port transfer functions, which can be used in system models to simulate the long-term contamination levels of hydraulic systems. The experimental detection of dynamic particle contamination levels and particle accumulation areas validate and confirm the CFD and the system model. Both models in combination allow for parameter and design studies to improve the fluid management of hydraulic reservoirs.
4

Anesthesia Safety: Filter Needle Use With Glass Ampules

Harmon, debran L. 01 January 2014 (has links)
Glass particle contamination of medication occurs when opening ampules which may cause patient harm. The use of filter needles reduces this risk. Many anesthesia providers use ampules daily, but do not use filter needles when aspirating medications from ampules. In addition, filter needles may not be readily available at the anesthesia medication preparation site. Not using filter needles or having them available for use can increase the risk of patient harm by glass particle contamination. The purpose of this project was to increase anesthesia provider’s knowledge thereby improving compliance with evidence-based standards when preparing medications from ampules. The goal is to increase filter needle use when medication is aspirated from an ampule in order to decrease the risk of glass particle contamination to the patient. This project consisted of a one-group pre/post intervention design using a piloted self-developed survey, an education intervention, and tracking of filter needle use. The convenience sample of eighty-three recruited anesthesia providers included anesthesiologists, nurse anesthetists, and anesthesiologist assistants that consented to participate. The filter needle inventory was tracked via an existing software program to determine filter needle use three months prior and three months after the intervention. Data were collected and analyzed using descriptive statistics. The results of this project found greater awareness among participants of standards and organizations regarding filter needle use with ampules, greater awareness of availability of filter needles on anesthesia carts, and a five-fold increase in filter needle usage by participants three months following the intervention as compared to three months prior to the intervention.

Page generated in 0.3861 seconds