• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 160
  • 41
  • 29
  • 19
  • 11
  • 6
  • 4
  • 2
  • 1
  • Tagged with
  • 385
  • 385
  • 385
  • 118
  • 115
  • 100
  • 100
  • 75
  • 70
  • 52
  • 42
  • 36
  • 35
  • 31
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
231

Particle image velocimetry in gas turbine combustor flow fields

Hollis, David January 2004 (has links)
Current and future legislation demands ever decreasing levels of pollution from gas turbine engines, and with combustor performance playing a critical role in resultant emissions, a need exists to develop a greater appreciation of the fundamental causes of unsteadiness. Particle Image Velocimetry (PIV) provides a platform to enable such investigations. This thesis presents the development of PIV measurement methodologies for highly turbulent flows. An appraisal of these techniques applied to gas turbine combustors is then given, finally allowing a description of the increased understanding of the underlying fluid dynamic processes within combustors to be provided. Through the development of best practice optimisation procedures and correction techniques for the effects of sub-grid filtering, high quality PN data has been obtained. Time average statistical data at high spatial resolution has been collected and presented for generic and actual combustor geometry providing detailed validation of the turbulence correction methods developed, validation data for computational studies, and increased understanding of flow mechanisms. These data include information not previously available such as turbulent length scales. Methodologies developed for the analysis of instantaneous PIV data have also allowed the identification of transient flow structures not seen previously because they are invisible in the time average. Application of a new `PDF conditioning' technique has aided the explanation of calculated correlation functions: for example, bimodal primary zone recirculation behaviour and jet misalignments were explained using these techniques. Decomposition of the velocity fields has also identified structures present such as jet shear layer vortices, and through-port swirling motion. All of these phenomena are potentially degrading to combustor performance and may result in flame instability, incomplete combustion, increased noise and increased emissions.
232

An evanescent-wave based particle image velocimetry technique

Li, Haifeng 17 November 2008 (has links)
Quantifying the velocity field near the wall in microfluidic devices is important because surface effects become significant at micro- to nanometer scales. Recent studies have suggested that the "no-slip" boundary condition breaks down in microscale flows of Newtonian liquids, where the amount of slip is usually extrapolated from velocity components measured far from the wall. This doctoral thesis presents a new technique, multilayer nano-particle image velocimetry (MnPIV), for measuring the tangential velocity components at different distances from and within about 500 nm of the wall and its application to measuring slip. The feasibility of MnPIV was demonstrated using synthetic images of plane Couette flow incorporating Brownian diffusion and imaging noise. The errors in MnPIV data were then quantified with Brownian dynamics simulations. Calibration experiments were used to correlate the image intensity of the tracer to its distance from the wall z. Multilayer nPIV was then used to determine the z-positions and distribution of the particles for z < 500 nm in experimental studies of microscale Poiseuille flow. The tracers were divided into three distinct layers based on their image intensities, and the average velocity of each layer was placed at the average z-position sampled by the particles in that layer. The resultant velocity gradients were within 6% on average of analytical predictions for 2D Poiseuille flow. Finally, the results of MnPIV studies of aqueous solutions flowing through microchannels with hydrophilic and hydrophobically-coated fused silica surfaces suggest that if the slip lengths are nonzero for both of these surfaces, they are less than the uncertainty in these results, or 27 nm and 31 nm for the hydrophilic and hydrophobic channels, respectively.
233

Experimentelle Untersuchung der Strömung und Vermischung in einem Drallbrennermodell

Palm, Roland. Unknown Date (has links)
Techn. Universiẗat, Diss., 2006--Darmstadt.
234

Caracterisation des contraintes mécaniques et leur rôle sans la croissance des Anéonysmes Aortiques Abdominaux.

Salsac, Anne-Virginie 07 February 2005 (has links) (PDF)
This research seeks to improve the understanding of the mechanisms accounting for the growth of abdominal aortic aneurysms (AAA), by quantifying the role that mechanical stimuli play in the disease processes. In recent years, the development of vascular diseases has been associated with the formation of disturbed patterns of wall shear stresses (WSS) and gradients of wall shear stresses (GWSS). They have been shown to affect the wall structural integrity, primarily via the changes induced on the morphology and functions of the endothelial cells (EC) and circulating blood cells. Particle Image Velocimetry measurements of the pulsatile blood flow have been performed in aneurysm models, while changing systematically their geometric parameters. The parametric study shows that the flow separates from the wall even at early stages of the disease (dilatation ≤ 50%). A large vortex ring forms in symmetric aneurysms, followed by internal shear layers. Two regions with distinct patterns of WSS have been identified: a region of flow detachment, with low oscillatory WSS, and a downstream region of flow reattachment, where large negative WSS and sustained GWSS are produced as a result of the impact of the vortex ring. The loss of symmetry in the models engenders a helical flow pattern due to the non- symmetric vortex shedding. The dominant vortex, whose strength increases with the asymmetry parameter, is shed from the most bulged wall (anterior). It results in the formation of a large recirculating region, where ECs are subjected to quasi-steady reversed WSS of low magnitude, while the posterior wall is exposed to quasi-healthy WSS. GWSS are generated at the necks and around the point of impact of the vortex. Lagrangian tracking of blood cells inside the different models of aneurysms shows a dramatic increase in the cell residence time as the aneurysm grows. While recirculating, cells experience high shear stresses close to the walls and inside the shear layers, which may lead to cell activation. The vortical structure of the flow also convects the cells towards the wall, increasing the probability for cell deposition and ipso facto for the formation of an intraluminal thrombus.
235

Volumetric Particle Velocimetry for Microscale Flows

January 2011 (has links)
abstract: Microfluidics is the study of fluid flow at very small scales (micro -- one millionth of a meter) and is prevalent in many areas of science and engineering. Typical applications include lab-on-a-chip devices, microfluidic fuel cells, and DNA separation technologies. Many of these microfluidic devices rely on micron-resolution velocimetry measurements to improve microchannel design and characterize existing devices. Methods such as micro particle imaging velocimetry (microPIV) and micro particle tracking velocimetry (microPTV) are mature and established methods for characterization of steady 2D flow fields. Increasingly complex microdevices require techniques that measure unsteady and/or three dimensional velocity fields. This dissertation presents a method for three-dimensional velocimetry of unsteady microflows based on spinning disk confocal microscopy and depth scanning of a microvolume. High-speed 2D unsteady velocity fields are resolved by acquiring images of particle motion using a high-speed CMOS camera and confocal microscope. The confocal microscope spatially filters out of focus light using a rotating disk of pinholes placed in the imaging path, improving the ability of the system to resolve unsteady microPIV measurements by improving the image and correlation signal to noise ratio. For 3D3C measurements, a piezo-actuated objective positioner quickly scans the depth of the microvolume and collects 2D image slices, which are stacked into 3D images. Super resolution microPIV interrogates these 3D images using microPIV as a predictor field for tracking individual particles with microPTV. The 3D3C diagnostic is demonstrated by measuring a pressure driven flow in a three-dimensional expanding microchannel. The experimental velocimetry data acquired at 30 Hz with instantaneous spatial resolution of 4.5 by 4.5 by 4.5 microns agrees well with a computational model of the flow field. The technique allows for isosurface visualization of time resolved 3D3C particle motion and high spatial resolution velocity measurements without requiring a calibration step or reconstruction algorithms. Several applications are investigated, including 3D quantitative fluorescence imaging of isotachophoresis plugs advecting through a microchannel and the dynamics of reaction induced colloidal crystal deposition. / Dissertation/Thesis / Ph.D. Mechanical Engineering 2011
236

Improved Techniques for Cardiovascular Flow Experiments

January 2015 (has links)
abstract: Aortic pathologies such as coarctation, dissection, and aneurysm represent a particularly emergent class of cardiovascular diseases and account for significant cardiovascular morbidity and mortality worldwide. Computational simulations of aortic flows are growing increasingly important as tools for gaining understanding of these pathologies and for planning their surgical repair. In vitro experiments are required to validate these simulations against real world data, and a pulsatile flow pump system can provide physiologic flow conditions characteristic of the aorta. This dissertation presents improved experimental techniques for in vitro aortic blood flow and the increasingly larger parts of the human cardiovascular system. Specifically, this work develops new flow management and measurement techniques for cardiovascular flow experiments with the aim to improve clinical evaluation and treatment planning of aortic diseases. The hypothesis of this research is that transient flow driven by a step change in volume flux in a piston-based pulsatile flow pump system behaves differently from transient flow driven by a step change in pressure gradient, the development time being substantially reduced in the former. Due to this difference in behavior, the response to a piston-driven pump can be predicted in order to establish inlet velocity and flow waveforms at a downstream phantom model. The main objectives of this dissertation were: 1) to design, construct, and validate a piston-based flow pump system for aortic flow experiments, 2) to characterize temporal and spatial development of start-up flows driven by a piston pump that produces a step change from zero flow to a constant volume flux in realistic (finite) tube geometries for physiologic Reynolds numbers, and 3) to develop a method to predict downstream velocity and flow waveforms at the inlet of an aortic phantom model and determine the input waveform needed to achieve the intended waveform at the test section. Application of these newly improved flow management tools and measurement techniques were then demonstrated through in vitro experiments in patient-specific coarctation of aorta flow phantom models manufactured in-house and compared to computational simulations to inform and execute future experiments and simulations. / Dissertation/Thesis / Doctoral Dissertation Bioengineering 2015
237

An isothermal experimental study of the unsteady fluid mechanics of gas turbine fuel injector flowfields

Midgley, Kristofer January 2005 (has links)
Low-emissions combustor design is crucially important to gas turbine engine manufacturers. Unfortunately, many designs are susceptible to unsteady oscillations that can result in structural fatigue and increased noise. Computational approaches that resolve flow unsteadiness, for example Large Eddy Simulation (LES), are being explored as one avenue to help understand such phenomena. However, in order to quantifY the accuracy of LES predictions, benchmark validation data in suitably chosen test cases are required. Comprehensive experimental data covering both time-averaged and timeresolved features are currently scarce. It was the aim of this thesis, therefore, to provide such data .in a configuration representing the near-field of a typical gas turbine fuel injector. It was decided to focus on the fuel injector since many unsteady events are believed to originate because of the transient interactions between the fuel injector flow and the main combustor flow. A radial fed two-stream fuel injector, based on a preexisting industrial gas-turbine Turbomeca design was used, since this geometry was known to be susceptible to unsteadiness. The fuel injector was investigated under isothermal conditions to place emphasis on the fluid mechanical behaviour of the fuel injector, including detailed capture of any unsteady phenomena present. Light Sheet Imaging (LSI) systems were used as the primary experimental technique to provide high quality spatially and temporally resolved instantaneous velocity and scalar field information in 2D planes (using ParticieImage Velocimetry (PIV) and Planar LaserInduced Fluorescence (PUF) techniques). Several methods were employed to extract information quantifYing the flow unsteadiness and improve visualisation of timedependent large-scale turbulent structures. Proper Orthogonal Decomposition (POD) analysis enabled clear identification of the dominant modes of energy containing structures. The results indicated that periodic high-energy containing vortex structures occurred in the swirl stream shear layer, emerging from the fuel injector. These formed a two-strong two-weak rotating vortex pattern which propagated down the main duct flow path. The formation of these vortices was found to be a function of the swirl number and originated due to an interaction between the forward moving swirl flow and the furthest upstream penetration point ofthe recirculation zone present in the main duct flow. Dependent on the magnitude of the swirl number (influencing the swirl stream cone angle) and the geometry of the fuel injector, the vortex formation point was sometimes found inside the fuel injector itself. If the vortices originated inside the fuel injector they appeared much more coherent in space and time and of higher energy. A second unsteady high energy containing phenomenon was also identified, namely a Precessing Vortex Core (PVC), which was damped out if the fuel injector contained a central jet. The dynamics of the PVC interacted with the dynamics of the swirl stream shear layer vortices to reduce there strength. Transient scalar measurements indicated that there was a clear connection between the unsteady vortex pattern and the rate of mixing, resulting in bursts of high heat release and is therefore identified as one source of combustor oscillations. Future fuel injector designs need to pay close attention to these unsteady features in selecting swirl number and internal geometry parameters.
238

Experimental and numerical study of flow distribution in compact plate heat exchangers

Galati, Chiara 13 December 2017 (has links) (PDF)
This PhD work was motivated by the CEA R&D program to provide solid technological basis for the use of Brayton power conversion system in Sodium-cooled Fast nuclear Reactors (SFRs). Multi-channel compact heat exchangers are necessary for the present application because of the low heat transfer capacity of the gas foreseen. In ASTRID project, a minimum size of Na channels section is required to avoid the plugging risk. However, this induces very low pressure losses in the bundle. Considering an additional inlet flow condition, a real risk of bad flow distribution remains. As a result, the thermal performance and thermal loading of the heat exchanger degrades due to it. The main goal of this work was to overcome the flow maldistribution problem by means of an innovative design of sodium distribution system (PATENT FR1657543), the development of a numerical strategy and the construction of an experimental database to validate all theoretical studies. The innovative sodium distribution system consists on an inlet header which tries to guide the evolution of the impinging jet flow while a system of bifurcating pre-distribution channels increases pressure drops in the bundle. Lateral communications between pre-distribution channels are introduced to further homogenize the flow. Two experimental facilities have been conceived to study the flow behavior in bifurcating channels and in the inlet header, respectively. At the same time, their effect on the flow distribution between channels is evaluated. The acquired PIV aerodynamic database allows to validate the numerical models and to prove the design basis for the proposed distribution system. Once having validated the CFD turbulence models and the strategy to study the flow maldistribution in the SGHE module, a decisive and trustworthy optimization of each component of the sodium distribution system has been performed. Finally, an optimal configuration has been proposed for the actual phase of ASTRID project.
239

Settlement Behavior of a Sandy Loam Due to Suction Changes Associated with Simulated Artificial Tree Roots

Areghan, Joseph I January 2012 (has links)
Shallow foundations rested on Leda clay that are widely distributed in Eastern Canada exhibit shrinkage characteristics and are prone to differential settlements. Due to this reason, significant repairs are necessary to the foundations and basements of residential structures constructed in Leda clay deposits. Differential settlements are commonly attributed to the changes in the natural water content of soils associated with water infiltration, evaporation or plant transpiration (i.e., tree-roots-suction). Various research studies have been undertaken to estimate the possible settlements of shallow foundations associated with the water infiltration or evaporation. Several thumb rules have been proposed through research studies, providing recommendations with respect to the distance at which trees must be planted as a function of their heights at maturity such that differential settlements can be avoided. However, limited studies have been carried out to estimate or model the settlements of shallow foundations taking into account the influence of tree-roots-suction. In the present research program, a comprehensive experimental study regarding the deformation characteristics of a sandy loam soil from Ottawa due to tree-root-suction is undertaken, using specially designed equipment. The study has been undertaken using a sandy loam soil so that the testing program can be conducted in a shorter period of time. An artificial rooting system (ARS) was designed and placed in a specially designed tank at the University of Ottawa to simulate tree-roots-suction and measure soil surface settlements associated with a decrease in natural water content (or increase in soil suction) using particle image velocimetry (PIV) technique. The ARS consists of an artificial root, suction generator, matric suction and volumetric water content monitoring devices. The variation of matric suction and volumetric water content are monitored at various depths using the instrumentation of the ARS. Based on the results of the experimental studies, a methodology is proposed to model the settlement behaviour of sandy loam soils due to suction from ARS, using commercial finite element software, SEEP/W and SIGMA/W (i.e. software package of GeoStudio 2007). The study offers a reasonably good comparison between the measured surface settlements and those estimated using the finite element modelling analysis. The modelling methodology presented in this thesis is promising and may be extended for estimating the settlement behaviour associated with the tree roots suction of Leda clay deposits and to other soils.
240

Performance of a Dual Plane Airfoil Model with Varying Gap, Stagger, and Decalage using Pressure Measurements and Particle Image Velocimetry

Nunes, Salome Kenneth 26 August 2021 (has links)
No description available.

Page generated in 0.0837 seconds