Spelling suggestions: "subject:"2articles 1ieasurement"" "subject:"2articles remeasurement""
1 |
Identifying sources and source contributions of PM [subscript 2.5] in Atlanta Georgia / Identifying sources and source contributions of PM 2.5 in Atlanta GeorgiaLee, Hanlim 12 1900 (has links)
No description available.
|
2 |
Measurement and analysis of ambient atmospheric particulate matter in urban and remote environmentsHagler, Gayle S. W. 09 May 2007 (has links)
Atmospheric particulate matter pollution is a challenging environmental concern in both urban and remote locations worldwide. It is intrinsically difficult to control, given numerous anthropogenic and natural sources (e.g. fossil fuel combustion, biomass burning, dust, and seaspray) and atmospheric transport up to thousands of kilometers after production. In urban regions, fine particulate matter (particles with diameters under 2.5 m) is of special concern for its ability to penetrate the human respiratory system and threaten cardiopulmonary health. A second major impact area is climate, with particulate matter altering Earth s radiative balance through scattering and absorbing solar radiation, modifying cloud properties, and reducing surface reflectivity after deposition in snow-covered regions. While atmospheric particulate matter has been generally well-characterized in populated areas of developed countries, particulate pollution in developing nations and remote regions is relatively unexplored. This thesis characterizes atmospheric particulate matter in locations that represent the extreme ends of the spectrum in terms of air pollution the rapidly-developing and heavily populated Pearl River Delta Region of China, the pristine and climate-sensitive Greenland Ice Sheet, and a remote site in the Colorado Rocky Mountains. In China, fine particles were studied through a year-long field campaign at seven sites surrounding the Pearl River Delta. Fine particulate matter was analyzed for chemical composition, regional variation, and meteorological impacts. On the Greenland Ice Sheet and in the Colorado Rocky Mountains, the carbonaceous fraction (organic and elemental carbon) of particulate matter was studied in the atmosphere and snow pack. Analyses included quantifying particulate chemical and optical properties, assessing atmospheric transport, and evaluating post-depositional processing of carbonaceous species in snow.
|
3 |
Modeling of Ultrafine Particle Emissions and Ambient Levels for the Near Roadside EnvironmentAhmed, Sauda 03 April 2017 (has links)
Various epidemiological studies have linked exposure to Ultrafine Particles (UFP; diameter< 100 nm) to adverse health impacts. Roadway traffic is one of the major sources of UFPs and heavily influences UFP concentrations in the nearby vicinity of major roadways. Modeling efforts to predict UFPs have been limited due to the scarcity of reliable information on emissions, lack of monitoring data and limited understanding of complex processes affecting UFP concentrations near sources.
In this study continuous measurement of ultrafine particle number concentrations (PNC) and mass concentrations of nitric oxide (NO), nitrogen dioxide (NO2) and PM2.5 was conducted near an arterial road and freeway at different seasons and meteorological conditions and integrated with traffic count data. PNC showed high correlation with NO (r=0.64 for arterial; 0.61 for freeway), NO2 (r=0.57 for arterial; 0.53 for freeway) and NOx (NOx=NO+NO2; r=0.63 for arterial; 0.59 for freeway) and moderate to low correlation with traffic volume (r=0.33 for arterial; 0.32 for freeway) and PM2.5 (r=0.28 for arterial; 0.23 for freeway); respectively; for both sites at 15 minute averages. The PNC-NOx relationship prevailed on a shorter term (15 min), hourly, and throughout the day basis. Both PNC and NOx showed comparatively higher correlation with traffic during the morning period but became lower during evening which can be attributed to the higher boundary layer and wind speeds. The variable meteorology in the evening affects both PNC and NOx concentrations in the same way and the correlation between NOx and PNC is maintained high both during morning (r=0.74 for arterial; 0.69 for freeway), and evening (r=0.62 for arterial; 0.59 for freeway) periods. Thus nitrogen oxides can be used as a proxy for traffic-related UFP number concentration reflecting the effect of both traffic intensity and meteorological dilution.
The PNC-NOx relation was explored for various meteorological parameters i.e. wind speed and temperature. It is found that NOx emission is temperature independent and can be used to reflect the effect of traffic intensity and meteorological dilution. Once the effect of traffic intensity and dilution is removed, the effect of temperature on PNC-NOx ratio becomes important which can be attributed to the variation in PNC emission factors with temperature.
The high morning PNC-NOx ratio found at the arterial road is a result of new particle formation due to lower temperature and low concentration of exhaust gases in the morning air favoring nucleation over condensation. This finding has important implication when calculating emission factors for UFP number concentrations. Thus it can be concluded that roadside concentration of ultrafine particles not only depends on traffic intensity but also on meteorological parameters affecting dilution or new particle formation. High concentrations of ultrafine particle number concentration close to a roadway is expected due to higher traffic intensity , as well as during low wind speed causing low dilution and low temperature conditions favoring new particle formation.
Finally a simplified approach of calculating particle number emission factor was developed using existing and easily available emission inventory for traffic related tracer gases. Using NOx emission factors from MOVES emission model, the emission ratio of PNC to NOx was converted to develop particle number emission factors. NOx was selected as the traffic related tracer gas since the number concentration of particles is closely correlated to NOx, NOx and particles are diluted in the same way and NOx emission factors are available for a variety of traffic situations. To ensure contribution of fresh traffic exhaust, the average of the difference of pollutant concentrations at high traffic condition and background condition was used to calculate PNC-NOX ratio. Using nitrogen oxides to define background and high-traffic conditions and MOVES emission factor for NOX to convert corresponding PNC-NOX ratio, an average emission factor of (1.82 ± 0.17) E+ 14 particle/ vehicle-km was obtained, suitable for summertime. When compared to existing particle number emission factors derived from dynamometer tests, it was found that there exits reasonable agreement between the calculated real world particle number emission factors and emission factors from dynamometer tests.
The calculated emission factor and R-Line dispersion model was tested in predicting near-road particle number concentrations. Although only 23% of the variability in PNC was explained by the dispersion model, 84.33% of the measurements fell within the factor of two envelope. This suggests that there is potential to effectively use these models and thus warrants more in-depth analysis. Finally, a simple map of PNC gradients from major roads of Portland was developed.
The results of this study helped identify proxy-indicators to provide reference values for estimating UFP concentrations and emissions that can be used for simple evaluation of particle concentration near major roadways for environmental and urban planning purposes and to assess expected impact of UFP pollution on population living near roadways exposed to elevated concentrations.
|
4 |
Real-time measurement of on-road fine particulate matter in AtlantaPapier, Mark Elliot 01 April 2008 (has links)
Particulate matter is increasingly linked to health effects not only for what was previously thought to be just a respiratory problem, but also for the cardiovascular system. Literature not only supports that high particulate matter over long periods of time is correlated to morbidity and mortality due to both cardiovascular and respiratory means, but that high levels of particulate matter, even in short bursts of high concentrations, may be the triggering mechanism for the onset of such problems. Due to automobiles being a prime source of particulate matter, roadway concentrations are often higher than those measured at off-road measurement sites run by various parts of the United States Government. Furthermore, the government run sites are averaged over timescales at a minimum of an hour and at a maximum of a running three-day twenty-four hour length. These are both so long that mesoscale information about the particulate matter, such as short duration high intensity bursts, would be completely removed from the dataset. This study utilizes a real-time portable instrumentation package, which can effectively measure particulate matter concentrations on the roadways of metro Atlanta. Measurements are taken both inside the cabin of a vehicle, which does have an in-cabin filtration system, and on a bicycle ridden along the streets without any form of filtration. These instruments, specifically calibrated handheld particle counters, did indeed find some spikes of particulates above the government s one-hour averages inside the cabin of a vehicle. Arguably more importantly, while riding a bicycle these handheld particle counters also found spikes of particulates approaching six times the amount monitored by the government sites, and several roadway averages that were higher than the off-road averages for the same time.
|
Page generated in 0.0929 seconds