• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 3
  • 1
  • Tagged with
  • 12
  • 12
  • 6
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Kontroliuojamos pakaitinės kartotinės pasyvios hipertermijos ir hipotermijos poveikis aklimacijos požymių kaitai / The effect of controlled intermittent repeated passive hyperthermia and hypothermia on changes of acclimation symptoms

Skaisgirytė, Beata 10 September 2013 (has links)
Žmogaus organizmas yra linkęs aklimuotis ir prie besikartojančių šilumos ir prie besikartojančių šalčio stimulų (Michael, 2001). Tai sukelia skirtingus fiziologinius atsakus organizme. Žmogaus organizmas aklimuodamasis šilumai siekia sušvelninti šilumos sukeltą fiziologinį stresą, ir pagerinti šiluminį komfortą bei treniravimosi galimybes. Aklimacija yra sukeliama pakartotinių šilumos stimulų, kurie sukelia pakankamą stresą, galintį pakelti odos ir vidines temperatūras, padidinti prakaitavimą. Dažniausiai aklimacija kasdien pasikartojantiems šilumos stimulams atsiranda per pirmas 4 dienas ir galutinai susiformuoja per 3 savaites. Šilumos aklimacijos sukelti požymiai – žemesnė vidinė temperatūra, padidėjęs prakaitavimas ir odos kraujotaka, sumažėjusi metabolinė medžiagų apykaita, sumažėjęs širdies ir kraujagyslių sistemai sukeliamas krūvis, pagerėjęs skysčių balansas ir padidėjusi šiluminė tolerancija (Michael ir kt., 2001). Šiais laikais profesinė ir rekreacinė veikla šaltomis oro sąlygomis yra gana dažna. Šalčio poveikis sukelia termoreguliacijos atsakus, kurie pasireiškia elgesiu arba fiziologiniais pokyčiais, kad išlaikytų šiluminę pusiausvyrą- padidėjusia metabolinė šilumos gamyba drebant arba vazokonstrikcija- sumažėjusiu šilumos atidavimu. Šie fiziologiniai atsakai priklauso nuo asmens individualių savybių- amžiaus, kūno sudėjimo, bendro prisitaikymo šalčiui. Stiprus šalčio stimulas gali sukelti medicinines traumas ar net mirtį (Launay, 2009). Aklimacija šalčiui yra... [toliau žr. visą tekstą] / Human body tends to acclimate to repeated heat or cold stimulus (Michael, 2001). This leads to different physiological responses in the body. During acclimation to heat the body seeks to soften heat-induced physiological stress, to improve thermal comfort and increase training opportunities. Acclimation is induced by repeated heat stimuli that cause sufficient stress, that can raise skin and core temperature, increase sweating. Usually the acclimation to daily repeated heat stimuli occurs within the first 4 days and finally forms during 3 weeks. Heat acclimation causes symptoms such as lower core temperature, increased sweating and skin blood circulation, decreased metabolism, decreased stress for cardiovascular system, improved fluid balance and increased thermal tolerance (Michael et al., 2001). Nowadays, professional and recreational activities in cold weather conditions are quite common. Cold exposures cause thermoregulatory responses that affects behaviour or physiological changes to maintain thermal balance- increased metabolic heat production while shivering, or vasoconstriction- reduced heating. These physiological responses depend on the person’s individual characteristics- age, body composition and general adaptation to cold. A strong cold stimulus can cause medical injuries or even death (Launey, 2009). Acclimation to cold is classified into several categories- metabolic, insulation, hypothermic and intermediate versions (Bittel, 1992). Acclimation to cold may... [to full text]
12

Développement d’un mur capteur-stockeur solaire pour le chauffage des bâtiments à très basse consommation d’énergie / Experimental tests and modeling of a solar storage wall for low energy consumption building

Basecq, Vincent 28 September 2015 (has links)
L’exploitation des énergies renouvelables est une voie nécessaire afin de lutter contre le réchauffement climatique, et afin d’anticiper la raréfaction des matières premières. Le mur capteur/stockeur solaire appliqué aux bâtiments à très basses consommations d’énergie s’inscrit dans cette volonté d’une transition vers les énergies renouvelables. Dans le cadre de ces travaux de thèse, l’énergie solaire est stockée dans des matériaux à changement de phase qui permettent un stockage de chaleur latente plus dense que le stockage sensible des matériaux de construction traditionnels. Cette énergie est restituée à l’ambiance intérieure par la circulation d’air neuf à travers l’élément de stockage. Un mur capteur/stockeur solaire a été développé en s’appuyant sur une revue bibliographique préalable des différents travaux scientifiques menés pour des problématiques similaires. Le dispositif a été expérimenté en environnement réel dans un premier temps, intégré à l’enveloppe d’un petit bâtiment en bois fortement isolé. La quantité de chaleur captée par le mur peut atteindre 2 kWh.m-2.jour-1, pour une quantité de chaleur restituée à l’air de 1,5 kWh.jour-1. Le dispositif a été testé en conditions maîtrisées de laboratoire. Une attention particulière a été portée à la mesure de température au sein même du MCP, afin d’analyser le comportement thermique de ce dernier. Deux phénomènes ont été observés : le recouvrement de la phase liquide sur la phase solide et l’homogénéisation des températures en phase liquide. Le comportement thermique du MCP dépend des interactions entre trois flux : le flux de charge (apport solaire), le flux de décharge (énergie restituée à l’air) et un flux vertical induit par le recouvrement de la phase liquide sur la phase solide. Par ailleurs, un modèle numérique dynamique du mur capteur a été développé en volumes finis. Ce modèle permet de simuler l’effet de serre du mur capteur, le stockage de chaleur et les phases de solidification et de fusion du MCP, et la restitution de chaleur à l’air entrant dans le bâtiment. Les résultats numériques alors obtenus ont été confrontés aux données expérimentales. Le modèle a été validé pour la température d’air soufflée (en sortie du mur capteur). L’écart entre valeurs expérimentales, sur des périodes journalières, est en moyenne de 0,6°C pour la température d’air soufflé et est inférieur à 10 % pour l’énergie fournie à l’air préchauffé. Ces différences sont inférieures aux incertitudes de mesures et à l’incertitude du calcul énergétique. Le modèle ainsi validé peut être couplé au code de simulation thermique dynamique du bâtiment TRNSYS. / Use of renewable energy is a necessary way to fight global warming and to anticipate scarcity of raw materials. The solar/storage wall used in buildings with lower energy consumption meets this evolution to renewable energy sources. In this thesis, solar energy is stored in a phase charge material (PCM), which provides latent storage. The latent storage is higher than sensible storage in usual building materials. This energy is restored to indoor air, by circulation and heating of inlet air through the wall storage element. In this thesis work, the solar storage wall was developed, based on previous published works dealing with similar systems. An experiment has been carried out with the solar storage integrated in a small wood building with a high insulation. The solar energy recovered by the wall reaches 2 kWh.m-2.day-1 and 1,5 kWh.day-1 was restored to air. In a second experiment, a prototype was developed to be used in controlled laboratory conditions. Special attention was given to PCM temperature measures to analyze the PCM thermal behavior. Two phenomena were observed: (i) liquid phase recovering solid phase, (ii) temperature homogenization in liquid phase. The PCM thermal behavior depends on interactions between three energetic flows: the charge flow (solar energy recovered), the restored flow (energy restored to the inlet air) and a vertical flow created by the liquid phase recovering. Furthermore, a numerical dynamic model for the solar storage wall was developed. It is based on a finite volume approach. This model simulates: (i) the ground effect in a solar wall, (ii) the thermal energy storage and phase changes, and (iii) heat recovery energy to air inlet. Numerical results were compared to experimental values. The model was validated for air temperature for daily cycle defined with a charge period (during sunning) and a continue air heating. The difference between numerical values and experimental values are lower than 0.6°C in mean temperature, and 10% in energy. This difference is lower than measurement uncertainties and energy calculation error margins. So the model is valeted and can be coupled with the dynamic thermal simulation code: TRNSYS.

Page generated in 0.0741 seconds