• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 6
  • 6
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Evaluation of bonding agent application on concrete patch performance

Donjuan, Jose January 1900 (has links)
Master of Science / Department of Civil Engineering / Kyle Riding / The durability of partial depth concrete repair is directly related to the bond strength between the repair material and existing concrete. The wait time effects of cementitous grouts, epoxy, acrylic latex, and polyvinyl acetate bonding agents were observed on bond strength. Three rapid repair materials were as a comparison to bond strength, as well as concrete samples with no bonding agents having dry conditions and saturated surface dry moisture condition. The bonding agents and rapid repair materials were tested in a controlled laboratory environment. Bond strength loss with wait times of 0, 2, 5, 10, and 30 minutes were observed when bonding agents were applied. The laboratory samples were loaded using a direct shear test. Field tests were performed using the same repair materials and bonding agents. When the agents were applied in the field the wait times used were 0, 15, 30, and 45 minutes. 7 day and 5 month pull off tensile tests were performed during the field experiment. The data from both experiments show that when using cement grout bonding agents the high bond strength can be obtained when the repair material is applied within 15 minutes of application of the cement grout, and after 15 minutes bond loss can be expected. Wait time didn't have a significant effect on epoxy and acrylic latex bonding agents as long as they were placed before setting. The polyvinyl acetate agent and repair materials can develop high bond strength in laboratory settings, but when used in the field the bond strengths experience loss. When not using bonding agents in a repair, adequate bond strength can be obtained when using saturated surface dry condition.
2

Evaluation of Different Techniques for Repair of Shear-span Corrosion-Damaged RC Beams

Elhuni, Hesham 23 April 2013 (has links)
Deterioration of reinforced concrete structures due to reinforcement corrosion is a serious problem that faces concrete infrastructure worldwide. Effect of the rebar corrosion in the shear span on the structural behaviour is not fully addressed in the published literature. This study examined the effects of corrosion of the longitudinal reinforcement in the shear span on the structural behaviour of RC beams and the effectiveness of three rehabilitation schemes on the structural performance of such beams. The experimental program consisted of testing fifteen medium-scale reinforced concrete beams (150mm wide x 350mm deep x 2400mm long) under static load. Test variables included: span to depth ratio, the degree of corrosion and the anchorage end condition and repair schemes. Two span to depth (a/d) ratios were considered: a/d=3.4 with one-point loading and a/d=2.4 with two-point loading. Two anchorage end-conditions were used: bonded or un-bonded reinforcement in the an-chorage zone. Four degrees of corrosion were chosen to simulate minor (2.5% to 5% mass loss), medium (7.5% mass loss), and severe (15% mass loss) degrees of corrosion. Corrosion was induced in the longitudinal reinforcement in the shear-span using accelerated corrosion techniques based on Faradays’ law. Three different repair scenarios were applied. The first scenario included removing the deteriorated concrete, cleaning the corroded steel and patching with a new self-compacting concrete. The second scenario included U-wrapping the beams cross-section using Glass fiber reinforced cement-based composite (GFRCM), and Carbon fiber reinforced cement-based composite (CFRCM) without removing the deteriorated concrete. The third scenario included patch repair and confinement by wrapping with GFRCM or CFRCM. Following corrosion and repair, all specimens were loaded statically to failure. Test results showed no major effect of shear-span corrosion on the flexural behaviour for the beams with end anchorage whereas a noticeable effect on the flexural behaviour was observed for beams with no end anchorage regions. The corrosion degree and the shear span to depth ratio affected the mode of failure for the specimens with no end anchorages. The type of repair significantly affected the overall behaviour of the corroded specimens. An analytical model was proposed and used to predict the load-deflection response of the tested specimens. The program calculated the mid-span deflection for a given load as an integration of the deflection of a series of elements, with the deflection being based on the elongation of the steel reinforcement in each element. A modified bond stress-slip model was incorporated into the calculations to account for the change in bond strength caused by the corrosion and/or confinement that are provided by repairs. The predicted results were in reasonable agreement with the experimental results.
3

Polarization of Galvanic Point Anodes for Corrosion Prevention in Reinforced Concrete

Dugarte, Margareth 02 April 2010 (has links)
The polarization performance of two types of commercial galvanic point anodes for protection of reinforced steel around patch repairs was investigated. Experiments included measurement of the polarization history of the anode under constant current impressed by galvanostatic circuits and in reinforced concrete slabs. The tests revealed, for both types of anodes, a potential-current function (PF) indicating relatively little anodic polarization from an open circuit potential at low current levels, followed by an abrupt increase in potential as the current approached an apparent terminal value. Aging of the anodes was manifested by a continually decreasing current output in the concrete tests, and by increasingly more positive potentials in the galvanostatic tests. Those changes reflected an evolution of the PF generally toward more positive open circuit potentials and, more importantly, to the onset of elevated polarized potentials at increasingly lower current levels. There was considerable variability among the performance of replicate units of a given anode type. Modest to poor steel polarization levels were achieved in the test yard slabs. Modeling of a generic patch configuration was implemented with a one-dimensional approximation. The model calculated the throwing distance that could be achieved by a given number of anodes per unit perimeter of the patch, concrete thickness, concrete resistivity, amount of steel and amount of polarization needed for cathodic prevention. The model projections and aging information suggest that anode performance in likely application scenarios may seriously degrade after only a few years of operation, even if a relatively optimistic 100 mV corrosion prevention criterion were assumed. Less conservative criteria have been proposed in the literature but are yet to be substantiated. Other investigations suggest a significantly more conservative corrosion prevention may apply instead. The latter case would question the ability of the point anodes to provide adequate corrosion prevention.
4

Evaluation of Different Techniques for Repair of Shear-span Corrosion-Damaged RC Beams

Elhuni, Hesham 23 April 2013 (has links)
Deterioration of reinforced concrete structures due to reinforcement corrosion is a serious problem that faces concrete infrastructure worldwide. Effect of the rebar corrosion in the shear span on the structural behaviour is not fully addressed in the published literature. This study examined the effects of corrosion of the longitudinal reinforcement in the shear span on the structural behaviour of RC beams and the effectiveness of three rehabilitation schemes on the structural performance of such beams. The experimental program consisted of testing fifteen medium-scale reinforced concrete beams (150mm wide x 350mm deep x 2400mm long) under static load. Test variables included: span to depth ratio, the degree of corrosion and the anchorage end condition and repair schemes. Two span to depth (a/d) ratios were considered: a/d=3.4 with one-point loading and a/d=2.4 with two-point loading. Two anchorage end-conditions were used: bonded or un-bonded reinforcement in the an-chorage zone. Four degrees of corrosion were chosen to simulate minor (2.5% to 5% mass loss), medium (7.5% mass loss), and severe (15% mass loss) degrees of corrosion. Corrosion was induced in the longitudinal reinforcement in the shear-span using accelerated corrosion techniques based on Faradays’ law. Three different repair scenarios were applied. The first scenario included removing the deteriorated concrete, cleaning the corroded steel and patching with a new self-compacting concrete. The second scenario included U-wrapping the beams cross-section using Glass fiber reinforced cement-based composite (GFRCM), and Carbon fiber reinforced cement-based composite (CFRCM) without removing the deteriorated concrete. The third scenario included patch repair and confinement by wrapping with GFRCM or CFRCM. Following corrosion and repair, all specimens were loaded statically to failure. Test results showed no major effect of shear-span corrosion on the flexural behaviour for the beams with end anchorage whereas a noticeable effect on the flexural behaviour was observed for beams with no end anchorage regions. The corrosion degree and the shear span to depth ratio affected the mode of failure for the specimens with no end anchorages. The type of repair significantly affected the overall behaviour of the corroded specimens. An analytical model was proposed and used to predict the load-deflection response of the tested specimens. The program calculated the mid-span deflection for a given load as an integration of the deflection of a series of elements, with the deflection being based on the elongation of the steel reinforcement in each element. A modified bond stress-slip model was incorporated into the calculations to account for the change in bond strength caused by the corrosion and/or confinement that are provided by repairs. The predicted results were in reasonable agreement with the experimental results.
5

Analise de reparos estruturais compositos colados usando o metodo dos elementos finitos / Finite element analyses of bonded composite patch

Passalacqua, Ricardo Luiz Antoniolli 13 August 2018 (has links)
Orientador: Renato Pavanello / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecanica / Made available in DSpace on 2018-08-13T16:55:44Z (GMT). No. of bitstreams: 1 Passalacqua_RicardoLuizAntoniolli_M.pdf: 1761222 bytes, checksum: 210835d85bf894a9e08c80add1420ec1 (MD5) Previous issue date: 2009 / Resumo: Reparos estruturais são frequentemente utilizados para restauração da resistência original de estruturas que apresentem alguma falha considerando critérios associados à integridade estrutural ou à alteração de alguma capacidade inicial do projeto. As principais aplicações na engenharia são: em estruturas aeronáuticas, na recuperação de pontes e em dutos da indústria de petróleo e gás. Neste trabalho, estuda-se o comportamento mecânico de reparos estruturais manufaturados em materiais isotrópicos e compósitos. Duas técnicas de fixação dos reparos são consideradas: rebitagem para os reparos metálicos e colagem para os reparos metálicos e compósitos. Os critérios de falha considerados são: critérios da energia de distorção de von Mises e critério de fratura frágil linear elástica. O objetivo principal é o desenvolvimento de métodos de predição numérica do comportamento mecânico dos reforços estruturais levando-se em conta a modelagem das falhas na estrutura original, dos reparos adicionados e da técnica de adesão utilizada. As aplicações propostas envolvem análise numérica de chapas e placas homogêneas e de materiais compósitos. A técnica numérica selecionada é o método dos elementos finitos, que é empregado para os casos de estado plano de tensão e de flexão de placas delgadas. Critérios de desempenho relativo são propostos para auxiliar na análise e otimização de estruturas trincadas, reparadas pelo uso de chapas em compósito coladas. Para a modelagem do adesivo, são utilizadas formulações de parâmetros concentrados equivalentes, sendo que as tensões normais e cisalhantes são avaliadas na região dos adesivos. Exemplos bidimensionais e tridimensionais foram implementados para validar a metodologia proposta. Finalmente, as conclusões são apresentadas e sugestões de investigações futuras são propostas / Abstract: Structural repairs are often used to restore the original strength of structures that present failure associated with structural integrity or the modification of any initial capacity. The main applications in engineering are: aeronautical structures, the rehabilitation of bridges and pipelines in the oil and gas industry. This work present an analysis of the mechanical behavior of structural repairs manufactured in isotropic or composites material. Two techniques for join the repairs are considered: riveting for metallic repairs and bonding for metallic and composite repairs. The considered failure criteria are: the criteria of distortion energy of von Mises and the criteria of fracture mechanics. The main objective is the development of methods for numerical prediction of the mechanical behavior of structural reinforcements considering the failures in the original structure, the repair and the join technique. The proposed applications involve numerical analysis of plates considering isotropic and composite materials. The numerical technique used is the finite elements method, applied to plane stress and bending plates cases. Criteria for relative performance are proposed to assist in the analysis and optimization of cracked structures, repaired by the bonding of composite patchs. For the modeling of the adhesive, a concentrated parameters formulation is used, and the normal and shear stress are evaluated in the adhesive layer. Two-dimensional and three-dimensional examples have been implemented to validate the proposed methodology. Finally, conclusions are presented and suggestions for future research are proposed / Mestrado / Mecanica dos Sólidos e Projeto Mecanico / Mestre em Engenharia Mecânica
6

Evaluation ultrasonore des réparations de structures métalliques par collage de patchs composites

Le Crom, Bénédicte 10 May 2010 (has links)
Cette thèse s’est déroulée dans le contexte de l’évaluation non destructive du collage de patches composites employés pour la réparation de structures aéronautiques. Le besoin a été exprimé par la DGA Techniques Aéronautiques (Toulouse). Le travail effectué a consisté en l’exploitation des ondes guidées, de type SH puis Lamb, pour mesurer des caractéristiques mécaniques d'un joint de colle et tenter d’évaluer, de manière non destructive, la qualité du collage. Dans un premier temps, les propriétés viscoélastiques des matériaux assemblés sont déterminées. Elles servent alors de données d’entrée à des modèles, basés sur la méthode SAFE (Semi Analytical Finite Element method), permettant d’obtenir les courbes de dispersion ainsi que les champs des différents modes guidés se propageant le long de l’assemblage collé. Ces simulations numériques permettent alors d’évaluer le potentiel des ondes guidées à caractériser un adhésif. Des mesures expérimentales sont ensuite menées pour confirmer les prédictions numériques. Finalement la résolution d’un problème inverse, qui consiste à évaluer les modules de rigidité de la couche de colle se situant entre une plaque d’aluminium et un patch, est proposée pour établir des pistes d’évaluation non destructive d’un collage répondant au besoin industriel. Cette étude a été financée par la DGA, France. / Repairing of metallic structures using composite patches bonded with an adhesive layer is more and more common in the aeronautic field, and particularly at DGA Techniques Aéronautiques. In order to guarantee the quality of this bond, the sensitivity of ultrasonic guided waves is investigated. Shear-horizontally polarized (SH) waves, and Lamb waves are investigated to infer the stiffness of the adhesive layer. The SAFE method is used to predict the dispersion curves and mode shapes of the different wave modes propagating along the three-layer assembly. Numerical simulations are run for selecting the most appropriate wave modes, i.e. with higher sensitivity to the stiffness of the bond than to other components properties. Experiments are also made for generating-detecting pre-selected SH or Lamb wave modes in order to confirm the numerical predictions. Finally the resolution of an inverse problem, consisting in the evaluation of the stiffness modulus of the bond layer between an aluminium plate and a carbon-epoxy composite patch, at different curing time, is proposed as a contribution to the establishment of possible strategies for bonds testing. This work was supported by DGA, France.

Page generated in 0.162 seconds