• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 8
  • 1
  • Tagged with
  • 24
  • 24
  • 10
  • 9
  • 9
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Matsubara dynamics and its practical implementation

Willatt, Michael John January 2017 (has links)
This thesis develops a theory for approximate quantum time-correlation functions, Matsubara dynamics, that rigorously describes how to combine quantum statistics with classical dynamics. Matsubara dynamics is based on Feynman's path integral formulation of quantum mechanics and is expected to describe the physics of any system that satisfies quantum Boltzmann statistics and exhibits rapid quantum decoherence, e.g. liquid water at room temperature. Having derived the Matsubara dynamics theory and explored the symmetry properties that it shares with the quantum Kubo time-correlation function, we demonstrate that two heuristic computational methods, Centroid Molecular Dynamics and Ring Polymer Molecular Dynamics, are based on quantifiable approximations to the Matsubara dynamics time-correlation function. This provides these methods with a stronger theoretical foundation and helps to explain their strengths and shortcomings. We then apply the Matsubara dynamics theory to a recently developed computational method of Poulsen et al. called the planetary model. We show that the planetary model is based on a harmonic approximation to Matsubara dynamics that is engineered to maintain the conservation of the quantum Boltzmann distribution, so quantum statistics and classical dynamics remain harmonised. By making practical modifications to the planetary model, we were able to calculate infrared absorption spectra for a point charge model of condensed-phase water over a range of thermodynamic conditions. We find that this harmonic approximation to Matsubara dynamics provides a good description of bending and vibrational motions and is expected to be a useful tool for future spectroscopic studies of more complex, polarisable models of water.
2

Sparse representations and quadratic approximations in path integral techniques for stochastic response analysis of diverse systems/structures

Psaros Andriopoulos, Apostolos January 2019 (has links)
Uncertainty propagation in engineering mechanics and dynamics is a highly challenging problem that requires development of analytical/numerical techniques for determining the stochastic response of complex engineering systems. In this regard, although Monte Carlo simulation (MCS) has been the most versatile technique for addressing the above problem, it can become computationally daunting when faced with high-dimensional systems or with computing very low probability events. Thus, there is a demand for pursuing more computationally efficient methodologies. Recently, a Wiener path integral (WPI) technique, whose origins can be found in theoretical physics, has been developed in the field of engineering dynamics for determining the response transition probability density function (PDF) of nonlinear oscillators subject to non-white, non-Gaussian and non-stationary excitation processes. In the present work, the Wiener path integral technique is enhanced, extended and generalized with respect to three main aspects; namely, versatility, computational efficiency and accuracy. Specifically, the need for increasingly sophisticated modeling of excitations has led recently to the utilization of fractional calculus, which can be construed as a generalization of classical calculus. Motivated by the above developments, the WPI technique is extended herein to account for stochastic excitations modeled via fractional-order filters. To this aim, relying on a variational formulation and on the most probable path approximation yields a deterministic fractional boundary value problem to be solved numerically for obtaining the oscillator joint response PDF. Further, appropriate multi-dimensional bases are constructed for approximating, in a computationally efficient manner, the non-stationary joint response PDF. In this regard, two distinct approaches are pursued. The first employs expansions based on Kronecker products of bases (e.g., wavelets), while the second utilizes representations based on positive definite functions. Next, the localization capabilities of the WPI technique are exploited for determining PDF points in the joint space-time domain to be used for evaluating the expansion coefficients at a relatively low computational cost. Subsequently, compressive sampling procedures are employed in conjunction with group sparsity concepts and appropriate optimization algorithms for decreasing even further the associated computational cost. It is shown that the herein developed enhancement renders the technique capable of treating readily relatively high-dimensional stochastic systems. More importantly, it is shown that this enhancement in computational efficiency becomes more prevalent as the number of stochastic dimensions increases; thus, rendering the herein proposed sparse representation approach indispensable, especially for high-dimensional systems. Next, a quadratic approximation of the WPI is developed for enhancing the accuracy degree of the technique. Concisely, following a functional series expansion, higher-order terms are accounted for, which is equivalent to considering not only the most probable path but also fluctuations around it. These fluctuations are incorporated into a state-dependent factor by which the exponential part of each PDF value is multiplied. This localization of the state-dependent factor yields superior accuracy as compared to the standard most probable path WPI approximation where the factor is constant and state-invariant. An additional advantage relates to efficient structural reliability assessment, and in particular, to direct estimation of low probability events (e.g., failure probabilities), without possessing the complete transition PDF. Overall, the developments in this thesis render the WPI technique a potent tool for determining, in a reliable manner and with a minimal computational cost, the stochastic response of nonlinear oscillators subject to an extended range of excitation processes. Several numerical examples, pertaining to both nonlinear dynamical systems subject to external excitations and to a special class of engineering mechanics problems with stochastic media properties, are considered for demonstrating the reliability of the developed techniques. In all cases, the degree of accuracy and the computational efficiency exhibited are assessed by comparisons with pertinent MCS data.
3

Path Integral Approach to Levy Flights and Hindered Rotations

Janakiraman, Deepika January 2013 (has links) (PDF)
Path integral approaches have been widely used for long in both quantum mechanics as well as statistical mechanics. In addition to being a tool for obtaining the probability distributions of interest(wave functions in the case of quantum mechanics),these methods are very instructive and offer great insights into the problem. In this thesis, path integrals are extensively employed to study some very interesting problems in both equilibrium and non-equilibrium statistical mechanics. In the non-equilibrium regime, we have studied, using a path integral approach, a very interesting class of anomalous diffusion, viz. the L´evy flights. In equilibrium statistical mechanics, we have evaluated the partition function for a class of molecules referred to as the hindered rotors which have a barrier for internal rotation. Also, we have evaluated the exact quantum statistical mechanical propagator for a harmonic potential with a time-dependent force constant, valid under certain conditions. Diffusion processes have attracted a great amount of scientific attention because of their presence in a wide range of phenomena. Brownian motion is the most widely known class of diffusion which is usually driven by thermal noise. However ,there are other classes of diffusion which cannot be classified as Brownian motion and therefore, fall under the category of Anomalous diffusion. As the name suggests, the properties of this class of diffusion are very different from those for usual Brownian motion. We are interested in a particular class of anomalous diffusion referred to as L´evy flights in which the step sizes taken by the particle during the random walk are obtained from what is known as a L´evy distribution. The diverging mean square displacement is a very typical feature for L´evy flights as opposed to a finite mean square displacement with a linear dependence on time in the case of Brownian motion. L´evy distributions are characterized by an index α where 0 <α ≤ 2. When α =2, the distribution becomes a Gaussian and when α=1, it reduces to a Cauchy/Lorentzian distribution. In the overdamped limit of friction, the probability density or the propagator associated with L´evy flights can be described by a position space fractional Fokker-Planck equation(FFPE)[1–3]. Jespersen et al. [4]have solved the FFPE in the Fourier domain to obtain the propagator for free L´evy flight(absence of an external potential) and L´evy flights in linear and harmonic potentials. We use a path integral technique to study L´evy flights. L´evy distributions rarely have a compact analytical expression in the position space. However, their Fourier transformations are rather simple and are given by e−D │p│α where D determines the width of the distribution. Due to the absence of a simple analytical expression, attempts in the past to study L´evy flights using path integrals in the position space [5, 6] have not been very successful. In our approach, we have tried to make use of the elegant representation of the L´evy distribution in the Fourier space and therefore, we write the propagator in terms of a two-dimensional path integral –one over paths in the position space(x)and the other over paths in the Fourier space(p). We shall refer to this space as the ‘phase space’. Such a representation is similar to the Hamiltonian path integral of quantum mechanics which was introduced by Garrod[7]. If we try to perform the path integral over Fourier variables first, then what remains is the usual position space path integral for L´evy flights which is rather difficult to solve. Instead, we perform the position space path integral first which results in expressions which are rather simple to handle. Using this approach, we have obtained the propagators for free L´evy flight and L´evy flights in linear and harmonic potentials in the over damped limit [8]. The results obtained by this method are in complete agreement with those obtained by Jesepersen et al. [4]. In addition to these results, we were also able to obtain the exact propagator for L´evy flights in a harmonic potential with a time-dependent force constant which has not been reported in the literature. Another interesting problem that we have considered in the over damped limit is to obtain the probability distribution for the area under the trajectory of a L´evy particle. The distributions, again, were obtained for free L´evy flight and for L´evy flights subjected to linear and harmonic potentials. In the harmonic potential, we have considered situations where the force constant is time-dependent as well as time-independent. Like in the case of the over damped limit, the probability distribution for L´evy flights in the under damped limit of friction can also be described using a fractional Fokker-Planck equation, although in the full phase space. However, this has not yet been solved for any general value of α to obtain the complete propagator in terms of both position and velocity. Using our path integral approach, the exact full phase space propagators have been obtained for all values of α for free L´evy flights as well as in the presence of linear and harmonic potentials[8]. The results that we obtain are all exact when the potential is at the most harmonic. If the potential is higher than harmonic, like the cubic potential, we have used a semi classical evaluation where, we extremize the action using an optimal path and further, account for fluctuations around this optimal path. Such potentials are very useful in describing the problem of escape of a particle over a barrier. The barrier crossing problem is very extensively studied for Brownian motion (Kramers problem) and the associated rate constant has been calculated in a variety of methods, including the path integral approach. We are interested in its L´evy analogue where we consider the escape of a particle driven by a L´evy noise over a barrier. On extremizing the action which depends both on phase space variables, we arrived at optimal paths in both the position space as well as the space of the conjugate variable, p. The paths form an infinite hierarchy of instant on paths, all of which have to be accounted for in order to obtain the correct rate constant. Care has to be taken while accounting for fluctuations around the optimal path since these fluctuations should be independent of the time-translational mode of the instant on paths. We arrived at an ‘orthogonalization’ scheme to perform the same. Our procedure is valid in the limit when the barrier height is large(or when the diffusion constant is very small), which would ensure that there is small but a steady flux of particles over the barrier even at very large times. Unlike the traditional Kramers rate expression, the rate constant for barrier crossing assisted by L´evy noise does not have an exponential dependence on the barrier height. The rate constant for wide range of α, other than for those very close to α = 2, are proportional to Dμ where, µ ≈ 1 and D is the diffusion constant. These observations are consistent with the simulation results obtained by Chechkin et al. [9]. In addition, our approach when applied to Brownian motion, gives the correct dependence on D. In equilibrium statistical mechanics we have considered two problems. In the first one, we have evaluated the imaginary time propagator for a harmonic oscillator with a time-dependent force constant(ω2(t))exactly, when ω2(t) is of the form λ2(t) - λ˙(t)where λ(t) is any arbitrary function of t. We have made use of Hamiltonian path integrals for this. The second problem that we considered was the evaluation of the partition function for hindered rotors. Hindered rotors are molecules which have a barrier for internal rotation. The molecule behaves like free rotor when the barrier is very small in comparison with the thermal energy, and when the barrier is very high compared to thermal energy, it behaves like a harmonic oscillator. Many methods have been developed in order to obtain the partition function for a hindered rotor. However, most of them are some what ad-hoc since they interpolate between free-rotor and the harmonic oscillator limits. We have obtained the approximate partition function by writing it as the trace of the density matrix and performing a harmonic approximation around each point of the potential[10]. The density matrix for a harmonic potential is in turn obtained from a path integral approach[11]. The results that we obtain using this method are very close to the exact results for the problem obtained numerically. Also, we have devised a proper method to take the indistinguishability of particles into account in internal rotation which becomes very crucial while calculating the partition function at low temperatures.
4

A path integral approach to the coupled-mode equations with specific reference to optical waveguides

Mountfort, Francesca Helen 03 1900 (has links)
MSc / Thesis (MSc (Physics))--University of Stellenbosch, 2009. / The propagation of electromagnetic radiation in homogeneous or periodically modulated media can be described by the coupled mode equations. The aim of this study was to derive analytical expressions modeling the solutions of the coupled-mode equations, as alternative to the generally used numerical and transfer-matrix methods. The path integral formalism was applied to the coupled-mode equations. This approach involved deriving a path integral from which a generating functional was obtained. From the generating functional a Green’s function, or propagator, describing the nature of mode propagation was extracted. Initially a Green’s function was derived for the propagation of modes having position independent coupling coefficients. This corresponds to modes propagating in a homogeneous medium or in a uniform grating formed by a periodic variation of the index of refraction along the direction of propagation. This was followed by the derivation of a Green’s function for the propagation of modes having position dependent coupling coefficients with the aid of perturbation theory. This models propagation through a nonuniform inhomogeneous medium, specifically a modulated grating. The propagator method was initially tested for the case of propagation in an arbitrary homogeneous medium. In doing so three separate cases were considered namely the copropagation of two modes in the forward and backward directions followed by the counter propagation of the two modes. These more trivial cases were used as examples to develop a rigorous mathematical formalism for this approach. The results were favourable in that the propagator’s results compared well with analytical and numerical solutions. The propagator method was then tested for mode propagation in a periodically perturbed waveguide. This corresponds to the relevant application of mode propagation in uniform gratings in optical fibres. Here two case were investigated. The first scenario was that of the copropagation of two modes in a long period transmission grating. The results achieved compared well with numerical results and analytical solutions. The second scenario was the counter propagation of two modes in a short period reflection grating, specifically a Bragg grating. The results compared well with numerical results and analytical solutions. In both cases it was shown that the propagator accurately predicts many of the spectral properties of these uniform gratings. Finally the propagator method was applied to a nonuniform grating, that is a grating for which the uniform periodicity is modulated - in this case by a raised-cosine function. The result of this modulation is position dependent coupling coefficients necessitating the use of the Green’s function derived using perturbation theory. The results, although physically sensible and qualitatively correct, did not compare well to the numerical solution or the well established transfer-matrix method on a quantitative level at wavelengths approaching the design wavelength of the grating. This can be explained by the breakdown of the assumptions of first order perturbation theory under these conditions.
5

Harmonic Wavelets Procedures and Wiener Path and Integral Methods for Response Determination and Reliability Assessment of Nonlinear Systems/Structures

January 2011 (has links)
In this thesis a novel approximate/analytical approach based on the concepts of stochastic averaging and of statistical linearization is developed for the response determination of nonlinear/hysteretic multi-degree-of-freedom (MDOF) systems subject to evolutionary stochastic excitation. The significant advantage of the approach relates to the fact that it is readily applicable for excitations possessing even non-separable evolutionary power spectra (EPS) circumventing ad hoc pre-filtering and pre-processing excitation treatments associated with existing alternative schemes of linearization. Further, the approach can be used, in a rather straightforward manner, in conjunction with recently developed design spectrum based analyses for obtaining peak response estimates without resorting to numerical integration of the nonlinear equations of motion. Furthermore, a novel approximate/analytical Wiener path integral based solution (PIS) is developed and a numerical PIS approach is extended to determine the response and first-passage probability density functions (PDFs) of nonlinear/hysteretic systems subject to evolutionary stochastic excitation. Applications include the versatile Preisach hysteretic model, recently applied in modeling systems equipped with smart material (shape memory alloys) devices used for seismic hazard risk mitigation. The approach is also applied to determine the capsizing probability of a ship, whose rolling dynamics is captured by a softening Duffing oscillator. Finally, novel harmonic wavelets based joint time-frequency response analysis and identification approaches are developed capable of determining the time-varying frequency content of non-stationary complex stochastic phenomena encountered in engineering applications. Specifically, a harmonic wavelets based statistical linearization approach is developed to determine the EPS of the response of nonlinear/hysteretic systems subject to stochastic excitation. In a similar context, an identification approach for nonlinear time-variant systems based on the localization properties of the harmonic wavelet transform is also developed. It can be construed as a generalization of the well established reverse multiple-input/single-output (MISO) spectral identification approach to account for non-stationary inputs and time-varying system parameters. Several linear and nonlinear time-variant systems are used to demonstrate the reliability of the approach.
6

Index Theorems and Supersymmetry

Eriksson, Andreas January 2014 (has links)
The Atiyah-Singer index theorem, the Euler number, and the Hirzebruch signature are derived via the supersymmetric path integral. Concisely, the supersymmetric path integral is a combination of a bosonic and a femionic path integral. The action in the supersymmetric path integral includes here bosonic, fermionic- and isospin fields (backgroundfields), where the cross terms in the Lagrangian are nicely eliminated due to scaling of the fields and using techniques from spontaneous breaking of supersymmetry (that give rise to a mechanism, analogous to the Higgs-mechanism, but here regarding the so called superparticles instead).  Thus, the supersymmetric path integral is a product of three pathintegrals over the three given fields, respectively, that can be evaluated exactly by means of Gaussian integrals. The closely related Witten index is a measure of the failure of spontaneous breaking of supersymmetry. In addition, the basic concepts of supersymmetry breaking are reviewed.
7

Integrais de trajetória na representação de estados coerentes / Integrals in the coherent state representation

Santos, Luis Coelho dos 28 February 2008 (has links)
Orientador: Marcus Aloizio Martinez de Aguiar / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Fisica Gleb Wataghin / Made available in DSpace on 2018-08-10T00:40:17Z (GMT). No. of bitstreams: 1 Santos_LuisCoelhodos_D.pdf: 950495 bytes, checksum: 6d6e6d4fadee89455b54a57206af4e76 (MD5) Previous issue date: 2008 / Resumo: A supercompleteza da base de estados coerentes gera uma multiplicidade de representações da integral de trajetória de Feynman. Estas diferentes representações, embora equivalentes quanticamente, levam a diferentes limites semiclássicos. Baranger et al calcularam o limite semiclássico de duas formas para a integral de trajetória, sugeridas por Klauder e Skagerstam. Cada uma destas fórmulas envolve trajetórias governadas por uma diferente representação clássica do operador Hamiltoniano: a representação P em um caso e a representação Q no outro. Nesta tese, nós construímos outras duas representações da integral de trajetória, cujos limites semiclássicos envolvem diretamente a representação de Weyl do operador Hamiltoniano, isto é, a própria Hamiltoniana classica. Mostramos que, no limite semiclássico, a dinâmica na representação de Weyl é independente da largura dos estados coerentes e o propagador é também livre das correções de fase encontradas em todos os outros casos. Além disto, fornecemos uma conexão explícita entre as representações quânticas de Weyl e de Husimi no espaço de fases / Abstract: The overcompleteness of the coherent states basis gives rise to a multiplicity of representations of Feynman¿s path integral. These different representations, although equivalent quantum mechanically, lead to different semiclassical limits. Baranger et al derived the semiclassical limit of two path integral forms suggested by Klauder and Skagerstam. Each of these formulas involve trajectories governed by a different classical representation of the Hamiltonian operator: the P representation in one case and the Q representation in the other one. In this thesis we construct two other representations of the path integral whose semiclassical limit involves directly the Weyl representation of the Hamiltonian operator, i.e., the classical Hamiltonian itself. We show that, in the semiclassical limit, the dynamics in the Weyl representation is independent of the coherent states width and that the propagator is also free from the phase corrections found in all the other cases. Besides, we obtain an explicit connection between the Weyl and the Husimi phase space representations of quantum mechanics / Doutorado / Física Clássica e Física Quântica : Mecânica e Campos / Doutor em Ciências
8

Dinâmica semiclássica na representação de estados coerentes / Semiclassical dynamics in coherent state representation

Grigolo, Adriano, 1986- 18 August 2018 (has links)
Orientador: Marcus Aloizio Martinez de Aguiar / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Fisica Gleb Wataghin / Made available in DSpace on 2018-08-18T09:38:45Z (GMT). No. of bitstreams: 1 Grigolo_Adriano_M.pdf: 3666934 bytes, checksum: 255f444a354a51cf33e045323fd794a8 (MD5) Previous issue date: 2011 / Resumo: O propagador é um objeto central quando se está interessado em obter soluções dependentes do tempo para a equação de Schrödinger. Ele representa a amplitude de probabilidade de que, após um certo intervalo de tempo, um dado estado inicial seja encontrado em um determinado estado final. O propagador pode ser calculado a partir de uma integral de caminhos, na qual todas as trajetórias geométricas que conectam o estado inicial ao final devem ser consideradas. Não obstante, à medida que a ação de um sistema se torna grande em comparação com a constante de Planck, verifica-se que somente aqueles caminhos que obedecem a equações de movimento clássicas contribuem significativamente para a integral. A aproximação semiclássica consiste justamente em calcular o propagador levando-se em conta apenas as contribuições provenientes das vizinhanças de tais trajetórias. Neste trabalho nos voltamos para o propagador semiclássico na representação de estados coerentes. Estados coerentes são estados de incerteza mínima os quais se adequam naturalmente à formulação semiclássica. Nesta representação, contudo, ocorre que as trajetórias clássicas que são utilizadas no cálculo do propagador semiclássico são complexas. Além disso, as condições de contorno às quais estas trajetórias estão submetidas impõem sérias dificuldades na avaliação direta de tal expressão. Como alternativa, apresentamos aqui uma representação a valores iniciais (IVR) para o propagador semiclássico escrito na base de estados coerentes. Duas versões deste método são divisadas. Os cuidados especiais que devem ser tomados ao se lidar com trajetórias complexas são enfatizados. Em seguida, aplicamos nossa fórmula IVR na resolução de alguns sistemas simples e mostramos que nossos resultados são comparáveis àqueles obtidos com o método de Herman-Kluk, que é o método mais popular dentre as IVRs semiclássicas / Abstract: The propagator is a central object when one is interested in obtaining time-dependent solutions to the Schrödinger equation. It stands for the probability amplitude that after a certain time interval, a given initial state is found at a given final state. The propagator can be calculated from a path integral in which all geometric paths that connect the initial and final states must be considered. Nevertheless, as the action of a system becomes large when compared to Planck¿s constant, one finds that only those paths that obey classical equations of motion will contribute significantly to the integral. The semiclassical approximation consists in evaluating the path integral by taking into account only those contributions arising from the vicinities of such classical trajectories. Here we focus on the semiclassical propagator in the coherent state representation. Coherent states are minimum uncertainty states that naturally lend themselves to the semiclassical formulation. In this representation, however, it turns out that the classical trajectories that contribute to the semiclassical propagator are complex. Moreover, the boundary conditions to which these trajectories are subjected pose serious difficulties in the direct evaluation of such expression. As an alternative, we present an initial value representation (IVR) for the semiclassical coherent state propagator. Since it makes use of complex trajectories, we call it Complex Initial Value Representation (CIVR). Two versions of the method are devised. The special care required when dealing with complex trajectories is emphasized. Finally, we apply our CIVR formula to a few simple systems and show that our results are comparable to those obtained with the Herman-Kluk method, which is the most popular method among the semiclassical IVR formulas / Mestrado / Física Geral / Mestre em Física
9

Propagação semiclássica na representação de estados coerentes / Semiclassical propagation in the coherent-state representation

Viscondi, Thiago de Freitas, 1985- 22 August 2018 (has links)
Orientador: Marcus Aloizio Martinez de Aguiar / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin / Made available in DSpace on 2018-08-22T04:47:13Z (GMT). No. of bitstreams: 1 Viscondi_ThiagodeFreitas_D.pdf: 5908171 bytes, checksum: 62e83e5e2d7f988db884e3964fd40971 (MD5) Previous issue date: 2013 / Resumo: A propagação semiclássica consiste na elaboração e aplicação de métodos para a resolução aproximada da equação de Schrödinger dependente do tempo, assumindo como hipótese que a ação clássica do sistema possui valor bastante superior à constante de Planck. Dentro deste contexto, o propagador quântico representa um elemento de interesse central, uma vez que esta grandeza corresponde à amplitude de probabilidade para a transição entre dois estados do sistema físico. Em um estágio preliminar de nosso trabalho, empregamos o conceito generalizado de estados coerentes para reformular o propagador quântico em termos de uma integral de caminho. Em seguida, com a utilização do método do ponto de sela, realizamos uma dedução detalhada para a aproximação semiclássica do propagador correspondente a uma ampla classe de grupos dinâmicos. A aplicação deste resultado formal está subordinada à resolução de equações clássicas de movimento sob condições de contorno, considerando um espaço de fase com dimensão duplicada. De maneira geral, a busca por trajetórias clássicas sujeitas a valores de contorno demonstra elevado custo computacional e complexidade técnica. Por esta razão, desenvolvemos três diferentes aproximações semiclássicas determinadas exclusivamente por condições iniciais. Em uma primeira situação, elaboramos um método de propagação constituído por uma integral sobre soluções clássicas no espaço de fase duplicado. No segundo caso, com a formulação do operador semiclássico de evolução temporal, eliminamos a necessidade pela duplicação dos graus de liberdade clássicos. A terceira abordagem, designada por propagador clássico corrigido, está definida pela contribuição de uma única trajetória. Com o propósito de avaliar a precisão e eficiência das expressões semiclássicas adquiridas, exemplificamos a aplicação destas ferramentas teóricas para os estados coerentes de SU(2) e SU(3). Por fim, apresentamos uma extensa discussão sobre as vantagens introduzidas pelo espaço de fase duplicado na implementação de uma aproximação semiclássica. Deste modo, verificamos que soluções clássicas tunelantes possuem uma importante participação na descrição precisa da penetração parcial de um pacote de onda em uma barreira de potencial finita. Além disto, mostramos que o fenômeno quântico de reflexão por um potencial atrativo está diretamente associado à ocorrência de trajetórias com comportamento não-clássico. / Abstract: The semiclassical propagation comprises the development and application of methods for obtaining approximate solutions to the time-dependent Schrödinger equation, assuming the hypothesis that the classical action of the system is much greater than the Planck constant. In this context, the quantum propagator represents an element of central interest, since this quantity corresponds to the probability amplitude for the transition between two states of thephysical system. In a preliminary stage of our work, we employ the generalized concept of coherent states to reformulate the quantum propagator in terms of a path integral. Then, with use of the saddlepoint method, we conduct a detailed derivation of the semiclassical approximation for the propagator corresponding to a wide class of dynamical groups. The application of this formal result depends on the resolution of classical equations of motion under boundary conditions, considering a phase space with doubled dimension. Generally, the search for classical trajectories subject to boundary values demonstrates high computational cost and technical complexity. For this reason, we have developed three distinct semiclassical approximations exclusively determined by initial conditions. In a first situation, we elaborate a propagation method composed of an integral over classical solutions in the doubled phase space. In the second case, with the formulation of the semiclassical time-evolution operator, we eliminate the need for the duplication of the classical degrees of freedom. The third approach, designated as corrected classical propagator, is defined by the contribution of a single trajectory. In order to evaluate the accuracy and efficiency of the obtained semiclassical expressions, we exemplify the application of these theoretical tools for the coherent states of SU(2) and SU(3). At last, we present an extensive discussion on the advantages introduced by the doubled phase space in implementing a semiclassical approximation. In this way, we find that tunneling classical solutions have an important participation in the accurate description of the partial penetration of a wave packet in a finite potential barrier. Furthermore, we show that the quantum phenomenon of reflection by an attractive potential is directly associated to the occurrence of trajectories with non-classical behavior. / Doutorado / Física / Doutor em Ciências
10

Matriz densidade a baixas temperaturas para sistemas com interação de pares / Density matrix at low temperatures for pairwise interacting systems

Abreu, Bruno Ricardi de, 1990- 24 August 2018 (has links)
Orientador: Silvio Antonio Sachetto Vitiello / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin / Made available in DSpace on 2018-08-24T13:18:32Z (GMT). No. of bitstreams: 1 Abreu_BrunoRicardide_M.pdf: 1928743 bytes, checksum: 32226a9b6b2fe6d0ce77dbb9efc50309 (MD5) Previous issue date: 2014 / Resumo: A matriz densidade é um objeto fundamental na mecânica estatística de sistemas de muitos corpos quânticos. Através dela pode ser encontrado o valor esperado de qualquer observável do sistema de interesse. Neste trabalho calculamos a matriz densidade a baixas temperaturas para sistemas de muitos corpos que interagem via um potencial de pares através de convolucões da matriz densidade a altas temperaturas, onde é possível utilizar aproximações semi-clássicas / Abstract: The density matrix is a fundamental object in statistical mechanics of quantum many-body systems. Through it the observed value of any observable of a quantum mechanical system of interest can be found. In this work we calculate the density matrix at low temperatures of manybody systems that interact through pairwise potentials using a convolution procedure of the density matrix at high temperatures, where is possible to apply semi-classical approximations / Mestrado / Física / Mestre em Física

Page generated in 0.2504 seconds