Spelling suggestions: "subject:"apatient derived xenograft"" "subject:"1patient derived xenograft""
1 |
Modelling, characterization, and therapeutic targeting of human brain metastasisSingh, Mohini January 2018 (has links)
Brain metastases (BM) are the most frequently diagnosed neoplasm to affect the adult central nervous system (CNS), occurring in 20-40% of all cancer patients throughout the course of the disease. The significant advancements to the treatment and control of primary cancers have unfortunately resulted in an increased incidence of BM, however, this complication of cancer progression continues to be met with a dismal outcome and limited therapeutic options. There remains a poor understanding of the several cellular hallmarks of BM, encompassing various molecular, genetic and epigenetic changes that underlay the stages of metastasis, which requires the development of clinically relevant models of metastasis. Our group has previously established the existence of a cancer stem cell/tumor initiating population with patient samples of BM, which established the foundation of this thesis. Thus, I postulate that there exists a subpopulation of cancer stem-like cells, termed brain metastasis initiating cells (BMICs), that is responsible for the initiation of BM and is identifiable by an exclusive subset of genes that regulate self-renewal and metastasis.
To support this hypothesis, I established novel experimental models of BM by inoculation of BMICs derived from patient samples of lung-to-brain metastases into intracranial (ICr), intracardiac (ICa), and intrathoracic (IT) routes into NOD/SCID mice. ICr injections validated the presence of a tumor initiating cell (TIC) capacity of BMICs in the secondary environment (brain). From ICa injections I was able to recapitulate macro-metastatic growth, whereas with IT injections I was able to capture the complete metastatic process, from primary lung tumor formation to micro-metastasis growth. Utilizing these models, I determined that the STAT3 pathway and genes SPOCK1 and TWIST2 all contribute to the regulation of BM development, where SPOCK1 may pose as a potential BMIC marker. Further interrogation of the metastatic process utilizing the IT model of BM led to the characterization of “pre-metastasis”, a stage where BMIC cells have crossed the blood-brain barrier and employ mechanisms to invade and seed the neural environment, while simultaneously repressing mechanisms of proliferation and cell growth that would indicate tissue colonization.
In summation, I propose a shift in the cancer research paradigm to target the metastatic process itself, to prevent the dissemination of primary tumor cells to the brain. I present models of clinically relevant models of human BM that have proved to be reliable as platforms to interrogate the process of BM, providing insight into the stage of pre-metastasis as a novel therapeutic window into BM prevention and possible extension of patient survival. / Thesis / Doctor of Philosophy (PhD)
|
2 |
Establishment and characterization of a novel treatment-related neuroendocrine prostate cancer cell line KUCaP13 / 治療関連神経内分泌前立腺癌の新規細胞株KUCaP13の樹立とその特徴Okasho, Kosuke 24 January 2022 (has links)
京都大学 / 新制・課程博士 / 博士(医学) / 甲第23601号 / 医博第4788号 / 新制||医||1055(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 羽賀 博典, 教授 戸井 雅和, 教授 伊藤 貴浩 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
|
3 |
Patient derived xenograft models of small-cell lung cancer provide molecular insights into mechanisms of chemotherapy cross-resistanceMyers, David Thomas 24 July 2018 (has links)
Small Cell Lung Cancer (SCLC) is a highly aggressive neuroendocrine tumor with a 5% survival rate over 5 years. Though SCLC comprises 13% of all cases of lung cancer the median survival time of 14.5 months has seen little improvement over the last four decades. Standard treatment relies on DNA damaging agents such as Cisplatin/Etoposide (EP) which induce a high response rate of 60-70%. Despite this initial response, nearly all patients will relapse rendering first-line therapies ineffective. Furthermore, SCLC has been shown to develop chemotherapy cross-resistance in which resistance to first-line chemotherapies will confer resistance to additional DNA damaging agents thereby reducing treatment efficacy and duration of response. Cross-Resistance constitutes a major clinical issue whose underlying mechanisms remain a mystery.
The modest improvements in SCLC patient outcomes over the decades may be partially explained by the existing systems of study. Current methodologies of SCLC study rely on cell lines, patient samples, and Genetically Engineered Mouse Models which have little functional correlation to clinical outcomes. While few sources have proposed Patient Derived Xenograft (PDX) systems as an improved alternative, significant data remains sparse. Without a robust model system which accurately recapitulates patient outcomes, molecular pathways driving resistance cannot be uncovered. Here we present the generation of 34 SCLC PDX models which maintain both genomic and functional fidelity. Furthermore, treatment of a 30-model subset with first-line chemotherapy EP and a novel chemotherapy Olaparib/Temozolomide (OT) allowed for functional and molecular comparison between groups. Our findings demonstrate incomplete independent resistance mechanisms between EP and OT treatment with a small overlap of 31 genes involved in glycolysis and xenobiotic metabolism.
|
4 |
Forkhead Box F1 (FOXF1) is an essential effector of the PAX3/FOXO1 oncogene in human alveolar rhabdomyosarcomaMilewski, David E. 14 October 2019 (has links)
No description available.
|
5 |
Lung fibrogenic microenvironment in mouse reconstitutes human alveolar structure and lung tumor / マウスにおける肺の線維化を促進する肺内微小環境を用いたヒト肺胞構造とヒト肺腫瘍の再構成Miyata, Ryo 23 March 2023 (has links)
京都大学 / 新制・課程博士 / 博士(医学) / 甲第24486号 / 医博第4928号 / 新制||医||1063(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 森信 暁雄, 教授 羽賀 博典, 教授 後藤 慎平 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
|
6 |
Comprehensive genomics in androgen receptor-dependent castration-resistant prostate cancer identifies an adaptation pathway mediated by opioid receptor kappa 1 / アンドロゲン受容体依存性去勢抵抗性前立腺癌におけるopioid receptor kappa 1を介した適応応答経路の同定Makino, Yuki 24 November 2022 (has links)
京都大学 / 新制・論文博士 / 博士(医学) / 乙第13517号 / 論医博第2267号 / 新制||医||1061(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 遊佐 宏介, 教授 戸井 雅和, 教授 小川 誠司 / 学位規則第4条第2項該当 / Doctor of Medical Science / Kyoto University / DFAM
|
7 |
Identification and validation of DKK1 as a novel candidate therapeutic target for glioblastoma / DKK1 as a novel candidate therapeutic target of glioblastomaYelle, Nicolas 22 November 2018 (has links)
Glioblastoma (GBM) is a very aggressive and invasive tumour that relapses within nine months of diagnosis and remains incurable despite advances in multimodal therapy including surgical resection, chemotherapy and radiation. Poor patient outcome has been correlated to specific markers of brain tumour initiating cells (BTIC) and intratumoural heterogeneity (ITH), which have also been associated with treatment resistance and tumour recurrence. ITH can be explained at the cellular level by the existence of multiple populations of cancer cells, including some which have acquired stemness properties like self-renewal, proliferation, and multilineage differentiation, also known as cancer stem cells (CSCs). In brain tumours, CSCs or BTICs, have been shown to be resistant to both chemotherapy and radiation treatment, allowing them to escape therapy and consequently generate for tumour recurrence. As a result, therapies that focus on targeting the BTIC compartment within the bulk GBM tumour would provide better treatment and prognosis for patients. To profile GBM BTICs we conducted two transcriptomic screens. The first compared GBM BTICs to neural stem cells (NSCs), their healthy counterparts, and for the second we developed a pipeline utilizing a dynamic BTIC patient-derived xenograft (PDX) model of human GBM recurrence allowing for the profiling of GBM BTICs at engraftment, after chemoradiotherapy delivery in a phase we have termed "minimal residual disease" (MRD), and at tumour recurrence. In this study, Dickkopf-1 (DKK1) was identified as a potential therapeutic target for GBM from each transcriptomic screen and was studied using short hairpin knockdowns, blockade with monoclonal antibodies, and subsequent functional stem cell assays. / Thesis / Master of Science (MSc) / Glioblastoma (GBM) is a very aggressive tumour that relapses within nine months of diagnosis and remains incurable despite chemotherapy, radiation, and surgery. Relapse is believed to be caused by the presence of a wide variety of cell types, including cancer stem cells (CSCs), which have been shown to be resistant to both chemotherapy and radiation in GBM. As a result, therapies that focus on targeting the CSCs within the bulk GBM tumour would provide better treatment for patients. In this study, we analyzed this cell population by conducting two screens. The first compared the level at which genes are expressed in GBM CSCs in comparison to how they are expressed in their healthy counterparts, neural stem cells, whereas the second compared the primary patient GBM tumour to its relapsed form in a mouse model of the disease. In this study, the protein Dickkopf-1 (DKK1) was identified and validated as a potential therapeutic target of GBM using well established molecular and stem cell functional assays.
|
8 |
Human Stem Cell Models Identify Targets of Healthy and Malignant Hematopoietic RegulationReid, Jennifer January 2020 (has links)
Hematopoiesis is the highly regenerative process of producing billions of blood cells each day, including white blood cells, red blood cells, and platelets. Given the relatively short life span of these mature cells, hematopoiesis is dependent on stem and progenitor cells to generate renewed progeny, which represents a tightly regulated process. This includes cell intrinsic and external factors, and where dysregulation can lead to anemia and cancer. As such, the hematopoietic hierarchy has been intensely studied for nearly a century and represents a gold standard model of cell fate and developmental biology, in research and clinical applications. Cellular models, such as in vitro culture and human-mouse xenografts in vivo, have been developed to explain complex phenomena pertaining to hematopoiesis and also interrogate processes which are too invasive to study in humans. Hematopoietic generation is required beyond sustaining homeostasis, and progenitors can be damaged through cytotoxic injuries such as radiation and standard chemotherapy, and also undergo leukemic transformation. There are two main treatment modalities for leukemia patients (a) receiving a stem cell transplant, and (b) drug or radiation-based therapy. In the former, shortages of donors and stem cells has remained an unmet clinical need for decades. In the latter, selective targeting of genetic mutations has become a successful standard-of-care in leukemias such as chronic myelogenous leukemia and acute promyelocytic leukemia. However, in the most common adult hematologic malignancy, chronic lymphocytic leukemia (CLL), similar targeting therapies have not been developed. Altogether, shortages of stem cells from healthy donors, chemotherapy-induced immune dysfunction, and a lack of targeted therapies, all reinforce the immediate need for innovative cellular models to address these clinical problems. To generate additional sources of human hematopoietic progenitors for laboratory study, human PSCs have been used. Unlike hematopoietic progenitor cells collected from healthy and leukemic donors, human pluripotent stem cells (PSC) can be easily propagated and expanded in vitro. PSCs can generate hematopoietic progenitor cells, but they remain poorly understood and have not been robustly applied to solve the aforementioned deficiencies related to patient treatment. Importantly, the biological regulation of both hematopoiesis and PSCs has been experimentally confirmed to significantly deviate between humans and other animals, such as mice, further reinforcing the importance of human-specific cell models of hematopoiesis. Therefore, I hypothesized that human stem cell models provide a focused approach to interrogate the regulation of hematopoiesis from the apex of the hierarchy, which can be used to understand the promotion of healthy hematopoiesis and understand malignant transformation. Collectively, the data presented within this thesis offer a deeper conceptualization of human stem cell models and the deconvolution of several complex components of hematopoietic regulation. This work has revealed novel, clinically relevant, and actionable targets to ultimately enable the promotion of healthy hematopoiesis on multiple fronts. / Thesis / Doctor of Philosophy (PhD) / This thesis presents research on novel molecular and genetic regulatory pathways of self-renewal and differentiation in models of healthy and malignant human hematopoiesis. The origin of healthy hematopoietic regulation stems from a large body of work spanning decades and encompasses many efforts by others to derive hematopoietic stem cells from human pluripotent cells. The development of a genetic model for the malignant regulation of CLL was truly serendipitous, was propelled through robust and intriguing results that begged for further exploration, and filled a clinical gap in identifying actionable targets in CLL. Lastly, these two projects, along with my supportive roles in other published works throughout my graduate studies, instructed me to develop a human-mouse transplant model to uncover the biology of regenerating healthy hematopoiesis during injury.
|
9 |
Chemosensitivity of Patient-Derived Cancer Stem Cells Identifies Colorectal Cancer Patients with Potential Benefit from FGFR Inhibitor Therapy / 大腸がん患者由来のがん幹細胞を用いたFGFR阻害薬の有効性予測Yamamoto, Takehito 23 March 2021 (has links)
京都大学 / 新制・課程博士 / 博士(医学) / 甲第23062号 / 医博第4689号 / 新制||医||1048(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 武藤 学, 教授 妹尾 浩, 教授 小川 誠司 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
|
10 |
Functional and Structural Analysis of Decellularized Liver Tissue Matrix, with Potential Applications in Cancer Tissue EngineeringHansen, Ryan 30 August 2017 (has links)
No description available.
|
Page generated in 0.082 seconds