Spelling suggestions: "subject:"attern avoidance"" "subject:"attern voidance""
1 |
Telescoping Sums, Permutations, and First Occurrence DistributionsGodbole, Anant, Hao, Jie 01 December 2016 (has links) (PDF)
Telescoping sums very naturally lead to probability distributions on ℤ+. But are these distributions typically cosmetic and devoid of motivation? In this paper we give three examples of 'first occurrence' distributions, each defined by telescoping sums, and each arising from concrete questions about the structure of permutations.
|
2 |
Pattern Avoidance in Ordered Set PartitionsGodbole, Anant, Goyt, Adam, Herdan, Jennifer, Pudwell, Lara 01 January 2014 (has links)
In this paper we consider the enumeration of ordered set partitions avoiding a permutation pattern of length 2 or 3. We provide an exact enumeration for avoiding the permutation 12. We also give exact enumeration for ordered partitions with 3 blocks and ordered partitions with n-1 blocks avoiding a permutation of length 3. We use enumeration schemes to recursively enumerate 123-avoiding ordered partitions with any block sizes. Finally, we give some asymptotic results for the growth rates of the number of ordered set partitions avoiding a single pattern; including a Stanley-Wilf type result that exhibits existence of such growth rates.
|
3 |
Pattern Avoidance in Alternating Sign MatricesJohansson, Robert January 2006 (has links)
<p>This thesis is about a generalization of permutation theory. The concept of pattern avoidance in permutation matrices is investigated in a larger class of matrices - the alternating sign matrices. The main result is that the set of alternating sign matrices avoiding the pattern 132, is counted by the large Schröder numbers. An algebraic and a bijective proof is presented. Another class is shown to be counted by every second Fibonacci number. Further research in this new area of combinatorics is discussed.</p>
|
4 |
Pattern Avoidance in Alternating Sign MatricesJohansson, Robert January 2006 (has links)
This thesis is about a generalization of permutation theory. The concept of pattern avoidance in permutation matrices is investigated in a larger class of matrices - the alternating sign matrices. The main result is that the set of alternating sign matrices avoiding the pattern 132, is counted by the large Schröder numbers. An algebraic and a bijective proof is presented. Another class is shown to be counted by every second Fibonacci number. Further research in this new area of combinatorics is discussed.
|
5 |
New combinatorial techniques for nonlinear ordersMarcus, Adam Wade 26 June 2008 (has links)
This thesis focuses on the use of extremal techniques in analyzing problems that historically have been associated with other areas of discrete mathematics. We establish new techniques for analyzing combinatorial problems with two different types of nonlinear orders, and then use them to solve important previously-open problems in mathematics. In addition, we use entropy techniques to establish a variety of bounds in the theory of sumsets.
In the second chapter, we examine a problem of Furedi and Hajnal regarding forbidden patterns in (0,1)-matrices. We introduce a new technique that gives an asymptotically tight bound on the number of 1-entries that a (0,1)-matrix can contain while avoiding a fixed permutation matrix. We use this result to solve the Stanley-Wilf conjecture, a well-studied open problem in enumerative combinatorics. We then generalize the technique to give results on d-dimensional matrices.
In the third chapter, we examine a problem of Pinchasi and Radoicic on cyclically order sets. To do so, we prove an upper bound on the sizes of such sets, given that their orders have the intersection reverse property. We then use this to give an upper bound on the number of edges that a graph can have, assuming that the graph can be drawn so that no cycle of length four has intersecting edges. This improves the previously best known bound and (up to a log-factor) matches the best known lower bound. This result implies improved bounds on a number of well-studied problems in geometric combinatorics, most notably the complexity of pseudo-circle arrangements.
In the final chapter, we use entropy techniques to establish new bounds in the theory of sumsets. We show that such sets behave fractionally submultiplicatively, which in turn provides new Plunecke-type inequalities of the form first introduced by Gyarmati, Matolcsi, and Ruzsa.
|
6 |
ANALYTIC AND TOPOLOGICAL COMBINATORICS OF PARTITION POSETS AND PERMUTATIONSJung, JiYoon 01 January 2012 (has links)
In this dissertation we first study partition posets and their topology. For each composition c we show that the order complex of the poset of pointed set partitions is a wedge of spheres of the same dimension with the multiplicity given by the number of permutations with descent composition c. Furthermore, the action of the symmetric group on the top homology is isomorphic to the Specht module of a border strip associated to the composition. We also study the filter of pointed set partitions generated by knapsack integer partitions. In the second half of this dissertation we study descent avoidance in permutations. We extend the notion of consecutive pattern avoidance to considering sums over all permutations where each term is a product of weights depending on each consecutive pattern of a fixed length. We study the problem of finding the asymptotics of these sums. Our technique is to extend the spectral method of Ehrenborg, Kitaev and Perry. When the weight depends on the descent pattern, we show how to find the equation determining the spectrum. We give two length 4 applications, and a weighted pattern of length 3 where the associated operator only has one non-zero eigenvalue. Using generating functions we show that the error term in the asymptotic expression is the smallest possible.
|
7 |
Kombinatorické úlohy o permutacích / Combinatorial problems on permutationsWolfová, Mária January 2019 (has links)
In its theoretical part, this thesis sums up the basic knowledge concerning permutations. Besides the representation of permutations and determination of their fundamental characteristics, the theoretical part is, first of all, aimed at results concerning the decomposition of permutations into disjoint cycles and at finding the number of permutations with a certain characteristic. We introduce the fundamental bijection that is useful for solving many problems concerning the permutations. Further on, we focus on the number of permutations without a fixed point, Eulerian numbers expressing the number of permutations with a given number of descents, and the number of permutations with a given number of excedances, Stirling numbers of the first kind expressing the number of permutations with a given number of cycles, and Catalan numbers representing the number of permutations avoiding a chosen pattern of length three. Attention is also paid to the Gilbreath permutations and their characteristics. The practical part consists of 14 solved problems. The solutions rely on the results presented in the theoretical part, and there are deduced some further interesting results concerning random permutations.
|
8 |
Consecutive patterns and statistics on restricted permutationsElizalde Torrent, Sergi 16 July 2004 (has links)
El tema d'aquesta tesi és l'enumeració de permutacions amb subseqüències prohibides respecte a certs estadístics, i l'enumeració de permutacions que eviten subseqüències generalitzades.Després d'introduir algunes definicions sobre subseqüències i estadístics en permutacions i camins de Dyck, comencem estudiant la distribució dels estadístics -nombre de punts fixos' i -nombre d'excedències' en permutacions que eviten una subseqüència de longitud 3. Un dels resultats principals és que la distribució conjunta d'aquest parell de paràmetres és la mateixa en permutacions que eviten 321 que en permutacions que eviten 132. Això generalitza un teorema recent de Robertson, Saracino i Zeilberger. Demostrem aquest resultat donant una bijecció que preserva els dos estadístics en qüestió i un altre paràmetre. La idea clau consisteix en introduir una nova classe d'estadístics en camins de Dyck, basada en el que anomenem túnel.A continuació considerem el mateix parell d'estadístics en permutacions que eviten simultàniament dues o més subseqüències de longitud 3. Resolem tots els casos donant les funcions generadores corresponents. Alguns casos són generalitzats a subseqüències de longitud arbitrària. També descrivim la distribució d'aquests paràmetres en involucions que eviten qualsevol subconjunt de subseqüències de longitud 3. La tècnica principal consisteix en fer servir bijeccions entre permutacions amb subseqüències prohibides i certs tipus de camins de Dyck, de manera que els estadístics en permutacions que considerem corresponen a estadístics en camins de Dyck que són més fàcils d'enumerar.Tot seguit presentem una nova família de bijeccions del conjunt de camins de Dyck a sí mateix, que envien estadístics que apareixen en l'estudi de permutacions amb subseqüències prohibides a estadístics clàssics en camins de Dyck, la distribució dels quals s'obté fàcilment. En particular, això ens dóna una prova bijectiva senzilla de l'equidistribució de punts fixos en les permutacions que eviten 321 i en les que eviten 132. A continuació donem noves interpretacions dels nombres de Catalan i dels nombres de Fine. Considerem una classe de permutacions definida en termes d'aparellaments de 2n punts en una circumferència sense creuaments. N'estudiem l'estructura i algunes propietats, i donem la distribució de diversos estadístics en aquests permutacions.En la següent part de la tesi introduïm una noció diferent de subseqüències prohibides, amb el requeriment que els elements que formen la subseqüència han d'aparèixer en posicions consecutives a la permutació. Més en general, estudiem la distribució del nombre d'ocurrències de subparaules (subseqüències consecutives) en permutacions. Resolem el problema en diversos casos segons la forma de la subparaula, obtenint-ne les funcions generadores exponencials bivariades corresponents com a solucions de certes equacions diferencials lineals. El mètode està basat en la representació de permutacions com a arbres binaris creixents i en mètodes simbòlics.La part final tracta de subseqüències generalitzades, que extenen tant la noció de subseqüències clàssiques com la de subparaules. Per algunes subseqüències obtenim nous resultats enumeratius. Finalment estudiem el comportament assimptòtic del nombre de permutacions de mida n que eviten una subseqüència generalitzada fixa quan n tendeix a infinit. També donem fites inferiors i superiors en el nombre de permutacions que eviten certes subseqüències.
|
9 |
Énumération de polyominos définis en terme d'évitement de motif ou de contraintes de convexité / Enumeration of polyominoes defined in terms of pattern avoidance or convexity constraintsBattaglino, Daniela 26 June 2014 (has links)
Dans cette thèse nous étudions la caractérisation et l'énumération de polyominos définis par des contraintes de convexité et ou d'évitement de motifs. Nous nous intéressons à l'énumération des polyominos k-convexes selon le semi périmètre, qui n'était connue que pour k=1,2. Nous énumérons une sous classe, les polyominos k-parallélogrammes, grâce à une décomposition récursive dont nous déduisons la fonction génératrice qui est rationnelle. Cette fonction génératrice s'exprime à l'aide des polynômes de Fibonacci, ce qui nous permet d'en déduire une bijection avec les arbres planaires ayant une hauteur inférieure ou égale à k+2. Dans la deuxième partie, nous examinons la notion d'évitement de motif, qui a été essentiellement étudiée pour les permutations. Nous introduisons ce concept dans le contexte de matrices de permutations et de polyominos. Nous donnons des définitions analogues à celles données pour les permutations et nous explorons ses propriétés ainsi que celles du poste associé. Ces deux approches peuvent être utilisées pour traiter des problèmes ouverts sur les polyominos ou sur d'autres objets combinatoires. / In this thesis, we consider the problem of characterising and enumerating sets of polyominoes described in terms of some constraints, defined either by convexity or by pattern containment. We are interested in a well-known subclass of convex polyominoes, the k-convex polyominoes for which the enumeration according to the semi-perimeter is known only for k=1,2. We obtain, from recursive decomposition, the generating function of the class of k-convex parallelogram polyominoes, which turns out to be rational. Noting that this generating function can be expressed in terms of the Fibonacci polynomials, we describe a bijection between the class of k-parallelogram polyominoes and the class of planted planar trees having height less than k+3. In the second part of the thesis we examine the notion of pattern avoidance, which has been extensively studied for permutations. We introduce the concept of pattern avoidance in the context of matrices, more precisely permutation matrices and polyomino matrices. We present definitions analogous to those given for permutations and in particular we define polyomino classes, i.e. sets downward closed with respect to the containment relation. So, the study of the old and new properties of the redefined sets of objects has not only become interesting, but it has also suggested the study of the associated poset. In both approaches our results can be used to treat open problems related to polyominoes as well as other combinatorial objects.
|
10 |
Enumerative combinatorics related to partition shapesSjöstrand, Jonas January 2007 (has links)
This thesis deals with enumerative combinatorics applied to three different objects related to partition shapes, namely tableaux, restricted words, and Bruhat intervals. The main scientific contributions are the following. Paper I: Let the sign of a standard Young tableau be the sign of the permutation you get by reading it row by row from left to right, like a book. A conjecture by Richard Stanley says that the sum of the signs of all SYTs with n squares is 2^[n/2]. We prove a generalisation of this conjecture using the Robinson-Schensted correspondence and a new concept called chess tableaux. The proof is built on a remarkably simple relation between the sign of a permutation pi and the signs of its RS-corresponding tableaux P and Q, namely sgn(pi) = (−1)^v sgn(P)sgn(Q), where v is the number of disjoint vertical dominoes that fit in the partition shape of P and Q. The sign-imbalance of a partition shape is defined as the sum of the signs of all standard Young tableaux of that shape. As a further application of the sign-transferring formula above, we also prove a sharpening of another conjecture by Stanley concerning weighted sums of squares of sign-imbalances. Paper II: We generalise some of the results in paper I to skew tableaux. More precisely, we examine how the sign property is transferred by the skew Robinson-Schensted correspondence invented by Sagan and Stanley. The result is a surprisingly simple generalisation of the ordinary non-skew formula above. As an application, we find vanishing weighted sums of squares of sign-imbalances, thereby generalising a variant of Stanley’s second conjecture. Paper III: The following special case of a conjecture by Loehr and Warrington was proved by Ekhad, Vatter, and Zeilberger: There are 10^n zero-sum words of length 5n in the alphabet {+3,−2} such that no consecutive subword begins with +3, ends with −2, and sums to −2. We give a simple bijective proof of the conjecture in its original and more general setting where 3 and 2 are replaced by any relatively prime positive integers a and b, 10^n is replaced by ((a+b) choose a)^n, and 5n is replaced by (a+b)n. To do this we reformulate the problem in terms of cylindrical lattice walks which can be interpreted as the south-east border of certain partition shapes. Paper IV: We characterise the permutations pi such that the elements in the closed lower Bruhat interval [id,pi] of the symmetric group correspond to non-capturing rook configurations on a skew Ferrers board. These intervals turn out to be exactly those whose flag manifolds are defined by inclusions, as defined by Gasharov and Reiner. The characterisation connects Poincaré polynomials (rank-generating functions) of Bruhat intervals with q-rook polynomials, and we are able to compute the Poincaré polynomial of some particularly interesting intervals in the finite Weyl groups A_n and B_n. The expressions involve q-Stirling numbers of the second kind, and for the group A_n putting q = 1 yields the poly-Bernoulli numbers defined by Kaneko. / Ämnet för denna avhandling är enumerativ kombinatorik tillämpad på tre olika objekt med anknytning till partitionsformer, nämligen tablåer, begränsade ord och bruhatintervall. Dom viktigaste vetenskapliga bidragen är följande. Artikel I: Låt tecknet av en standardtablå vara tecknet hos permutationen man får om man läser tablån rad för rad från vänster till höger, som en bok. En förmodan av Richard Stanley säjer att teckensumman av alla standardtablåer med n rutor är 2^[n/2]. Vi visar en generalisering av denna förmodan med hjälp av Robinson-Schensted-korrespondensen och ett nytt begrepp som vi kallar schacktablåer. Beviset bygger på ett anmärkningsvärt enkelt samband mellan tecknet hos en permutation pi och tecknen hos dess RS-motsvarande tablåer P och Q, nämligen sgn(pi)=(-1)^v sgn(P)sgn(Q), där v är antalet disjunkta vertikala dominobrickor som får plats i partitionsformen hos P och Q. Teckenobalansen hos en partitionsform definieras som teckensumman av alla standardtablåer av den formen. Som en ytterligare tillämpning av formeln för teckenöverföring ovan bevisar vi också en starkare variant av en annan förmodan av Stanley som handlar om viktade summor av kvadrerade teckenobalanser. Artikel II: Vi generaliserar några av resultaten i artikel I till skeva tablåer. Närmare bestämt undersöker vi hur teckenegenskapen överförs av Sagan och Stanleys skeva Robinson-Schensted-korrespondens. Resultatet är en förvånansvärt enkel generalisering av den vanliga ickeskeva formeln ovan. Som en tillämpning visar vi att vissa viktade summor av kvadrerade teckenobalanser blir noll, vilket leder till en generalisering av en variant av Stanleys andra förmodan. Artikel III: Följande specialfall av en förmodan av Loehr och Warrington bevisades av Ekhad, Vatter och Zeilberger: Det finns 10^n ord med summan noll av längd 5n i alfabetet {+3,-2} sådana att inget sammanhängande delord börjar med +3, slutar med -2 och har summan -2. Vi ger ett enkelt bevis för denna förmodan i dess ursprungliga allmännare utförande där 3 och 2 byts ut mot vilka som helst relativt prima positiva heltal a och b, 10^n byts ut mot ((a+b) över a)^n och 5n mot (a+b)n. För att göra detta formulerar vi problemet i termer av cylindriska latticestigar som kan tolkas som den sydöstra gränslinjen för vissa partitionsformer. Artikel IV: Vi karakteriserar dom permutationer pi sådana att elementen i det slutna bruhatintervallet [id,pi] i symmetriska gruppen motsvarar ickeslående tornplaceringar på ett skevt ferrersbräde. Dessa intervall visar sej vara precis dom vars flaggmångfalder är definierade av inklusioner, ett begrepp introducerat av Gasharov och Reiner. Karakteriseringen skapar en länk mellan poincarépolynom (ranggenererande funktioner) för bruhatintervall och q-tornpolynom, och vi kan beräkna poincarépolynomet för några särskilt intressanta intervall i dom ändliga weylgrupperna A_n och B_n. Uttrycken innehåller q-stirlingtal av andra sorten, och sätter man q=1 för grupp A_n så får man Kanekos poly-bernoullital. / QC 20100818
|
Page generated in 0.0816 seconds