• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 1
  • Tagged with
  • 11
  • 11
  • 7
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Pattern Synthesis Techniques And Compact Data Representation Schemes For Efficient Nearest Neighbor Classification

Pulabaigari, Viswanath 01 1900 (has links) (PDF)
No description available.
2

Approximation of Antenna Patterns With Gaussian Beams in Wave Propagation Models.

Sherkat, Navid January 2011 (has links)
The topic of antenna pattern synthesis, in the context of beam shaping, is considered. One approach to this problem is to use the method of point matching. This method can be used to approximate antenna patterns with a set of uniformly spaced sources with suitable directivities. One specifies a desired antenna pattern and approximates it with a combination of beams. This approach results in a linear system of equations that can be solved for a set of beam coefficients. With suitable shifts between the matching points and between the source points, a good agreement between the assumed and the reproduced antenna patterns can be obtained along an observation line. This antenna modelling could be used in the program NERO to compute the field at the receiver antenna for a realistic 2D communication link. It is verified that the final result is not affected by the details of the antenna modelling.
3

Performance optimisation of small antenna arrays

Khan, Asim Ali January 2011 (has links)
This thesis addresses radiation pattern synthesis problems for small linear periodic phased arrays (with array elements less then 10). Due to the small array size conventional pattern synthesis techniques fail to produce the required results. In the case of practical small arrays, mutual coupling and element pattern asymmetric effect degrade the array radiation performance. The main performance metrics considered in this thesis include side lobe level (SLL), gain, halfpower beamwidth (HPBW) and mainbeam scan direction. The conventional pattern synthesis approaches result in sub optimal gain, SLL and HPBW due to the limited number of elements and the mutual coupling involved. In case of difference pattern synthesis these factors resulted in lower difference pattern slope, degraded SLL and difference peak asymmetry. The sum and difference patterns are used in monopulse arrays and a simplified feed that could produce both patterns with acceptable radiation properties is of interest and has been examined (chapter 5). A conventional technique is applied to small arrays to synthesise a sector beam and there is limited control over the radiation pattern. It is shown that the mutual coupling has significant effect on the array radiation pattern and mitigation is necessary for optimum performance (chapter 6). Furthermore, wideband phased arrays may have a natural limitation of the HPBW in low gain applications and minimisation of the variation becomes important. Also the SLL variations for wideband antenna arrays in the presence of mutual coupling considerably degrade the radiation pattern. The mutual coupling degrades significantly the radiation pattern performance in case of small scanning wideband arrays (chapter 7). It is the primary goal of this thesis to develop an optimisation scheme thatis applied in the above scenarios (chapters 3 & 4). The only degree of freedom assumed is the array excitation. Optimised amplitude and phase for each element in the array are determined by the proposed scheme, concurrently. The deterministic optimisation techniques reported in the literature for the pattern synthesis may involve complicated problem modelling. The heuristic opti-misation techniques generally are computationally expensive. The proposedIntelligent z-space Boundary Condition-Particle Swarm Optimiser (IzBC-PSO)is based on a heuristic algorithm. This scheme can be applied to a wider rangeof problems without significant modifications and requires fewer computationscompared to the competing techniques.In order to verify the performance of IzBC-PSO antenna array measure-ments were performed in the receiving mode only using the online and offlinedigital beamforming setups described in chapter 8. The measurement resultsshow that the proposed scheme may be successfully applied with both onlineand offline digital beamformers for a practical small array (chapter 8).
4

A Study of Reconfigurable Antennas as a Solution for Efficiency, Robustness, and Security of Wireless Systems

Mehmood, Rashid 01 June 2015 (has links) (PDF)
The reconfigurable aperture (RECAP) is a reconfigurable antenna consisting of a dense array of electronically controlled elements, which can be manipulated to support many antenna functions within a single architecture. RECAPs are explored herein as an enabling technology for future software defined and cognitive radio architectures, as well as compact wireless devices supporting many bands and services. First, the concept of a parasitic RECAP is developed and analyzed for various communication applications. This begins with the analysis of existing RECAP topologies (e.g. planar and parasitic) using a hybrid method combining full wave simulations and network analysis. Next, a performance versus complexity analysis is performed to assess the use of a parasitic RECAP for the most critical communications functions: pattern synthesis, MIMO communications and physical-layer wireless security. To verify simulation results, a prototype parasitic RECAP is also built and deployed in real propagation environments. Given the potential of adaptive and reconfigurable architectures for providing enhanced security, an idealized reconfigurable antenna is analyzed, resulting in the concept of secure array synthesis. The objective is to find optimal array beamforming for secure communication in the presence of a passive eavesdropper in a static line-of-sight (LOS) channel. The method is then extended to the case of multipath propagation environments. The problem is solved by casting it into the form of a semi-definite program, which can be solved with convex optimization. The method is general and can be applied to an arbitrary array topology with or without antenna mutual-coupling. Due to complexity of the problem, initial attention has been restricted to idealized reconfigurable antennas (smart antennas), where excitation amplitude and phase at each element can be controlled independently. Lastly, reconfigurable antennas are investigated as a solution to support the emerging application of over-the-air (OTA) testing in a low-cost and compact way, resulting in the concept of the reconfigurable over-the-air chamber (ROTAC). First, an idealized two-dimensional ROTAC is analyzed, revealing that the fading distribution, spatial correlation, frequency selectivity, and multipath angular spectrum can be controlled by proper specification of the random loads. Later, a prototype of ROTAC is built to study the fading statistics and angular characteristics of the multipath fields inside a practical chamber.
5

Synthesis of Arbitrary Antenna Arrays

Nagesh, S R 04 1900 (has links)
Design of antenna arrays for present day requirements has to take into account both mechanical and electrical aspects. Mechanical aspects demand the antennas to have low profile, non-protruding structures, structures compatible to aerodynamic require­ments and so on. Electrical aspects may introduce several constraints either due to. technical reasons or due to readability conditions in practice. Thus, arrays of modern requirements may not fall into the category of linear or planar arrays. Further, due to the nearby environment, the elements will generate complicated individual patterns. These issues necessitate the analysis and synthesis of antenna arrays which are arbi­trary as far as the orientation, position or the element pattern are concerned. Such arrays which may be called arbitrary arrays are being investigated in this thesis. These investigations have been discussed as different aspects as indicated below: Radiation Characteristics of Arbitrary Arrays Radiation fields of an arbitrarily oriented dipole are obtained. Such fields are plotted for typical cases. Further, methods for transforming the electromagnetic fields are discussed. Having obtained the field due to an arbitrary element, the fields due to an arbitrary array are obtained. Factors controlling the radiation fields, like, the curvature in the array and element pattern are investigated. Radiation patterns of circular and cylindrical arrays are plotted. Synthesis of a Side Lobe Topography Requirements of a narrow beam pattern generated by an antenna array are identified. A problem of synthesizing such a pattern using an arbitrary array is formulated. The envelope of the side lobe region which may be called, the side lobe topography (sit), is included in the computation of the covariance matrix. This problem which has been formulated as a problem of minimizing a quadratic function subjected to a system of linear constraints is solved by the method of Lagrangian multipliers. An iterative procedure is used to satisfy all the requirements of the pattern synthesis. The procedure has been validated by synthesizing linear arrays and is used to synthesize circular and parabolic arrays. Patterns with tapered sit, Taylor-like sit have been synthesized. Asymmetric patterns are also synthesized. Role of sit is brought out. Shaped Beam Synthesis Synthesis of shaped broad beams is discussed. Amplitude constraints are formulated. Phase distribution is linked with the phase centre. Quadratic problems thus formu­lated are solved by the Lagrangian method of undetermined multipliers. An iterative procedure is made use of to synthesize flat topped beams as well as cosecant squared-patterns using linear arrays as well as circular arrays. Reasonable excitation dynamic has been obtained. Optimum phase centres obtained by trial and error are made use of. Effects of the Frequency and Excitation on the Synthesized Patterns In general, synthesized patterns can be sensitive towards any specific parameter either excitation or to frequency or any such parameter. Several methods can be used to observe these issues. In this thesis, these effects are also studied. Using a specific array configuration, to synthesize a specified radiation pattern, frequency is changed by 10% from the design frequency and the pattern is computed. Similarly, excitation phase distribution is rounded to the nearest available phase distribution using a digital phase shifter (say 8 bit) and the resulting pattern is computed. Further, excitation dynamic is also controlled by boosting the amplitudes of the array elements which are less than the permissible (i.e. the maximum excitation/allowed dynamic). Effects of these variations are also recorded. It appears that reasonable patterns can be obtained, in spite of significant variations in these parameters in most of the cases. Reconfigurable Arbitrary Arrays It would be very useful if a single array configuration can be used for different ap- plications. This may be either for the different phases of a single application or for different applications that may be required at different times. Attempts are made to synthesize a variety of patterns from a single array. Such arrays which may be called as reconfigurable arrays can be of much use. Obviously, the excitations are different for different patterns. Both narrow beams, as well as shaped broad beams, with different side lobe topographies have been synthesized using a single array.
6

Efficient broadband antenna array processing using the discrete fourier form transform

Sayyah Jahromi, Mohammad Reza, Information Technology & Electrical Engineering, Australian Defence Force Academy, UNSW January 2005 (has links)
Processing of broadband signals induced on an antenna array using a tapped delay line filter and a set of steering delays has two problems. Firstly one needs to manipulate large matrices to estimate the filter coefficients. Secondly the use of steering delays is not only cumbersome but implementation errors cause loss of system performance. This thesis looks at both of these problems and presents elegant solutions by developing and studying a design method referred to as the DFT method, which does not require steering delays and is computationally less demanding compared to existing methods. Specifically the thesis studies and compares the performance of a time domain element space beamformer using the proposed method and that using an existing method, and develops the DFT method when the processor is implemented in partitioned form. The study presented in the thesis shows that the processors using the DFT method are robust to look direction errors and require less computation than that using the existing method for comparable performance. The thesis further introduces a broadband beamformer design which does not require any steering delays between the sensors and the tapped delay line section as is presently the case. It has the capability of steering the array in an arbitrary direction with a specified frequency response in the look direction while canceling unwanted uncorrelated interferences. The thesis presents and compares the performance of a number of techniques to synthesize an antenna pattern of a broadband array. These techniques are designed to produce isolated point nulls as well as broad sector nulls and to eliminate the need for the steering delays. Two of the pattern synthesis techniques presented in the thesis allow optimization against unwanted interferences in unknown directions. The techniques allow formulation of a beamforming problem such that the processor is not only able to place nulls in specified directions but also able to cancel directional interferences in unknown directions along with a specified frequency response in the look direction over a band of interest. The thesis also presents a set of directional constraints such that one does not need steering delays and an array can be constrained in an arbitrary direction with a specified frequency response. The constraints presented in the thesis are simple to implement. Based on these constraints a pattern synthesis technique for broadband antenna array is also presented.
7

Phase Shifting Surface (PSS) and Phase and Amplitude Shifting Surface (PASS) for Microwave Applications

Gagnon, Nicolas 14 March 2011 (has links)
This thesis describes an electrically thin surface used for electromagnetic applications in the microwave regime. The surface is free-standing and its primary purpose is to modify the phase distribution, or the phase and amplitude distribution of electromagnetic fields propagating through it: it is called phase shifting surface (PSS) in the first case, and phase and amplitude shifting surface (PASS) in the second case. For practical applications, the surface typically comprises three or four layers of metallic patterns spaced by dielectric layers. The patterns of the metallic layers are designed to locally alter the phase (and amplitude in the case of the PASS) of an incoming wave to a prescribed set of desired values for the outgoing wave. The PSS/PASS takes advantage of the reactive coupling by closely spacing of the metallic layers, which results in a larger phase shift range while keeping the structure significantly thin. The PSS concept is used to design components such as gratings and lens antennas which are presented in this document. The components are designed for an operating frequency of 30 GHz. The PSS phase grating gives high diffraction efficiency, even higher than a dielectric phase grating. Several types of lens antennas are also presented, which show comparable performance to that of a conventional dielectric plano-hyperbolic lens antenna with similar parameters. The PASS concept is used in a beam shaping application in which a flat-topped beam antenna is designed. This work demonstrates the potential for realising thin, lightweight and low-cost antennas at Ka band, in particular for substituting higher-gain antenna technologies such as conventional dielectric shaped lens antennas.
8

Phase Shifting Surface (PSS) and Phase and Amplitude Shifting Surface (PASS) for Microwave Applications

Gagnon, Nicolas 14 March 2011 (has links)
This thesis describes an electrically thin surface used for electromagnetic applications in the microwave regime. The surface is free-standing and its primary purpose is to modify the phase distribution, or the phase and amplitude distribution of electromagnetic fields propagating through it: it is called phase shifting surface (PSS) in the first case, and phase and amplitude shifting surface (PASS) in the second case. For practical applications, the surface typically comprises three or four layers of metallic patterns spaced by dielectric layers. The patterns of the metallic layers are designed to locally alter the phase (and amplitude in the case of the PASS) of an incoming wave to a prescribed set of desired values for the outgoing wave. The PSS/PASS takes advantage of the reactive coupling by closely spacing of the metallic layers, which results in a larger phase shift range while keeping the structure significantly thin. The PSS concept is used to design components such as gratings and lens antennas which are presented in this document. The components are designed for an operating frequency of 30 GHz. The PSS phase grating gives high diffraction efficiency, even higher than a dielectric phase grating. Several types of lens antennas are also presented, which show comparable performance to that of a conventional dielectric plano-hyperbolic lens antenna with similar parameters. The PASS concept is used in a beam shaping application in which a flat-topped beam antenna is designed. This work demonstrates the potential for realising thin, lightweight and low-cost antennas at Ka band, in particular for substituting higher-gain antenna technologies such as conventional dielectric shaped lens antennas.
9

Phase Shifting Surface (PSS) and Phase and Amplitude Shifting Surface (PASS) for Microwave Applications

Gagnon, Nicolas 14 March 2011 (has links)
This thesis describes an electrically thin surface used for electromagnetic applications in the microwave regime. The surface is free-standing and its primary purpose is to modify the phase distribution, or the phase and amplitude distribution of electromagnetic fields propagating through it: it is called phase shifting surface (PSS) in the first case, and phase and amplitude shifting surface (PASS) in the second case. For practical applications, the surface typically comprises three or four layers of metallic patterns spaced by dielectric layers. The patterns of the metallic layers are designed to locally alter the phase (and amplitude in the case of the PASS) of an incoming wave to a prescribed set of desired values for the outgoing wave. The PSS/PASS takes advantage of the reactive coupling by closely spacing of the metallic layers, which results in a larger phase shift range while keeping the structure significantly thin. The PSS concept is used to design components such as gratings and lens antennas which are presented in this document. The components are designed for an operating frequency of 30 GHz. The PSS phase grating gives high diffraction efficiency, even higher than a dielectric phase grating. Several types of lens antennas are also presented, which show comparable performance to that of a conventional dielectric plano-hyperbolic lens antenna with similar parameters. The PASS concept is used in a beam shaping application in which a flat-topped beam antenna is designed. This work demonstrates the potential for realising thin, lightweight and low-cost antennas at Ka band, in particular for substituting higher-gain antenna technologies such as conventional dielectric shaped lens antennas.
10

Phase Shifting Surface (PSS) and Phase and Amplitude Shifting Surface (PASS) for Microwave Applications

Gagnon, Nicolas January 2011 (has links)
This thesis describes an electrically thin surface used for electromagnetic applications in the microwave regime. The surface is free-standing and its primary purpose is to modify the phase distribution, or the phase and amplitude distribution of electromagnetic fields propagating through it: it is called phase shifting surface (PSS) in the first case, and phase and amplitude shifting surface (PASS) in the second case. For practical applications, the surface typically comprises three or four layers of metallic patterns spaced by dielectric layers. The patterns of the metallic layers are designed to locally alter the phase (and amplitude in the case of the PASS) of an incoming wave to a prescribed set of desired values for the outgoing wave. The PSS/PASS takes advantage of the reactive coupling by closely spacing of the metallic layers, which results in a larger phase shift range while keeping the structure significantly thin. The PSS concept is used to design components such as gratings and lens antennas which are presented in this document. The components are designed for an operating frequency of 30 GHz. The PSS phase grating gives high diffraction efficiency, even higher than a dielectric phase grating. Several types of lens antennas are also presented, which show comparable performance to that of a conventional dielectric plano-hyperbolic lens antenna with similar parameters. The PASS concept is used in a beam shaping application in which a flat-topped beam antenna is designed. This work demonstrates the potential for realising thin, lightweight and low-cost antennas at Ka band, in particular for substituting higher-gain antenna technologies such as conventional dielectric shaped lens antennas.

Page generated in 0.0613 seconds