1 |
Liquid crystal point diffraction interferometer.Mercer, Carolyn Regan. January 1995 (has links)
A new instrument, the liquid crystal point diffraction interferometer (LCPDI), has been developed for the measurement of phase objects. This instrument maintains the compact, robust design of Linnik's point diffiaction interferometer (PDI) and adds to it phase stepping capability for quantitative interferogram analysis. The result is a compact, simple to align, environmentally insensitive interferometer capable of accurately measuring optical wavefronts with very high data density and with automated data reduction. This dissertation describes the theory of both the PDI and liquid crystal phase control. The design considerations for the LCPDI are presented, including manufacturing considerations. The operation and performance of the LCPDI are discussed, including sections regarding alignment, calibration, and amplitude modulation effects. The LCPDI is then demonstrated using two phase objects: a defocus difference wavefront, and a temperature distribution across a heated chamber filled with silicone oil. The measured results are compared to theoretical or independently measured results and show excellent agreement. A computer simulation of the LCPDI was performed to verify the source of observed periodic phase measurement error. The error stems from intensity variations caused by dye molecules rotating within the liquid crystal layer. Methods are discussed for reducing this error. Algorithms are presented which reduce this error; they are also useful for any phase-stepping interferometer that has unwanted intensity fluctuations, such as those caused by unregulated lasers. It is expected that this instrument will have application in the fluid sciences as a diagnostic tool, particularly in space based applications where autonomy, robustness, and compactness are desirable qualities. It should also be useful for the testing of optical elements, provided a master is available for comparison.
|
2 |
Drying of Multicomponent Liquid FilmsLuna, Fabio January 2004 (has links)
The convective drying of thin layers of multicomponentliquid mixtures into an inert gas, and the influence ofdifferent process controlling mechanisms on drying selectivityis studied. Drying experiments under gas-phase-controlledconditions are performed by low intensity evaporation, fromfree liquid surfaces, of ternary mixtures without non-volatilesolutes. Liquid-side-controlled experiments are carried out bydrying a multicomponent polymeric solution containing twovolatile components, one non-volatile polymer and an optionalnonvolatile softening substance. Mathematical models to describe gas- andliquid-side-controlled drying based on interactive diffusion inboth liquid and gas phases as the main mechanisms for masstransfer are developed. For gas-phase-controlled drying, astability analysis of the ordinary differential equations thatdescribes the evaporation process is performed. Isothermal andnon-isothermal drying processes are considered in batch andcontinuous modes. The mathematical model to describe thecomposition profiles during batch drying of the polymeric film,considering liquid resistance, is solved numerically. Due tothe lack of experimental data, properties for this polymericsystem are estimated by using established methods. Ananalytical solution of the diffusion equation, by assuming anisothermal drying process and a constant matrix ofmulticomponent diffusion coefficients is developed. For thecontinuous case, liquid-side resistance is studied by modellingevaporation of a multicomponent falling liquid film into aninert gas including indirect heating. The results of the gas-phase-controlled model are in goodagreement with experimental results. For the polymeric film,the agreement is only qualitative since the model does notaccount for a membrane that develops on the film surface. Thestability analysis permits the prediction of trajectories andfinal state of a liquid mixture in a gas-phase-controlleddrying process. For isothermal evaporation of ternary mixturesinto pure gas, the solutions are trajectories in the phaseplane represented by a triangular diagram of compositions. Thepredicted ternary dynamic azeotropic points are unstable orsaddle. On the other hand, binary azeotropes are stable whenthe combination of the selectivities of the correspondingcomponents is negative. In addition, pure component singularpoints are stable when they are contained within theirrespective isolated negative selectivity zones. Undernon-isothermal conditions, maximum temperature valuescharacterise stable azeotropes. Incremental loading of the gaswith one or more of the components leads to a node-saddlebifurcation, where a saddle azeotrope and a stable azeotropecoalesce and disappear. For continuous drying, the singularpoints are infinite and represent dynamic equilibrium pointswhose stability is mainly dependent on the ratio of inletgas-to-liquid flow rates. As long as the process isgas-phasecontrolled, these results also apply to a porous solidcontaining a liquid mixture. In general, liquid-side control makes the drying processless selective but it is difficult to maintain this conditionduring the whole process. Under the influence of its owndynamics, a process starting as liquid-side-controlled tendstowards a gas-phase-controlled process. The presence ofnon-volatile components and indirect heating may delay thisdevelopment. Considering the evolution of the processcontrolling steps and its influence on selectivity, a modelaimed at describing the complete trajectory of a drying orevaporation process must include the coexistence of allrelevant mechanisms. Keywords:ternary mixture, falling film, diffusionequation, gas-phase control, liquid-phase control, selectivity,stability analysis, polymeric solution, evaporation, azeotrope,batch drying, continuous drying.
|
3 |
Drying of Multicomponent Liquid FilmsLuna, Fabio January 2004 (has links)
<p>The convective drying of thin layers of multicomponentliquid mixtures into an inert gas, and the influence ofdifferent process controlling mechanisms on drying selectivityis studied. Drying experiments under gas-phase-controlledconditions are performed by low intensity evaporation, fromfree liquid surfaces, of ternary mixtures without non-volatilesolutes. Liquid-side-controlled experiments are carried out bydrying a multicomponent polymeric solution containing twovolatile components, one non-volatile polymer and an optionalnonvolatile softening substance.</p><p>Mathematical models to describe gas- andliquid-side-controlled drying based on interactive diffusion inboth liquid and gas phases as the main mechanisms for masstransfer are developed. For gas-phase-controlled drying, astability analysis of the ordinary differential equations thatdescribes the evaporation process is performed. Isothermal andnon-isothermal drying processes are considered in batch andcontinuous modes. The mathematical model to describe thecomposition profiles during batch drying of the polymeric film,considering liquid resistance, is solved numerically. Due tothe lack of experimental data, properties for this polymericsystem are estimated by using established methods. Ananalytical solution of the diffusion equation, by assuming anisothermal drying process and a constant matrix ofmulticomponent diffusion coefficients is developed. For thecontinuous case, liquid-side resistance is studied by modellingevaporation of a multicomponent falling liquid film into aninert gas including indirect heating.</p><p>The results of the gas-phase-controlled model are in goodagreement with experimental results. For the polymeric film,the agreement is only qualitative since the model does notaccount for a membrane that develops on the film surface. Thestability analysis permits the prediction of trajectories andfinal state of a liquid mixture in a gas-phase-controlleddrying process. For isothermal evaporation of ternary mixturesinto pure gas, the solutions are trajectories in the phaseplane represented by a triangular diagram of compositions. Thepredicted ternary dynamic azeotropic points are unstable orsaddle. On the other hand, binary azeotropes are stable whenthe combination of the selectivities of the correspondingcomponents is negative. In addition, pure component singularpoints are stable when they are contained within theirrespective isolated negative selectivity zones. Undernon-isothermal conditions, maximum temperature valuescharacterise stable azeotropes. Incremental loading of the gaswith one or more of the components leads to a node-saddlebifurcation, where a saddle azeotrope and a stable azeotropecoalesce and disappear. For continuous drying, the singularpoints are infinite and represent dynamic equilibrium pointswhose stability is mainly dependent on the ratio of inletgas-to-liquid flow rates. As long as the process isgas-phasecontrolled, these results also apply to a porous solidcontaining a liquid mixture.</p><p>In general, liquid-side control makes the drying processless selective but it is difficult to maintain this conditionduring the whole process. Under the influence of its owndynamics, a process starting as liquid-side-controlled tendstowards a gas-phase-controlled process. The presence ofnon-volatile components and indirect heating may delay thisdevelopment. Considering the evolution of the processcontrolling steps and its influence on selectivity, a modelaimed at describing the complete trajectory of a drying orevaporation process must include the coexistence of allrelevant mechanisms.</p><p><b>Keywords:</b>ternary mixture, falling film, diffusionequation, gas-phase control, liquid-phase control, selectivity,stability analysis, polymeric solution, evaporation, azeotrope,batch drying, continuous drying.</p>
|
4 |
Interferometric filter-based planar Doppler velocimetryLu, Zenghai January 2008 (has links)
This thesis describes the development of a Mach-Zehnder interferometric filter based planar Doppler velocimetry (MZI-PDV) flow measurement technique. The technique uses an entirely new optical system, an unbalanced MZI incorporating glass blocks for wavefront-matching, to replace the iodine cell currently used in conventional PDV. The free spectral range of the interferometric filter can be selected by adjusting the optical path difference of the MZI. This allows the velocity measurement range, sensitivity and resolution to be varied. This system offers no restricts to the choice of laser wavelength of operation which is not the case with most techniques. Two techniques to process the interference fringe images are presented. The first uses the shift of the fringe pattern to determine the Doppler frequency shift along profiles. The second provides a full-field measurement by normalising the received light intensity at each pixel in the image. With the single camera MZI-PDV scheme, exact alignment of the two output images on the active area of the camera is automatic. This eliminates the pixel-matching problem in conventional two camera PDV systems. The technique allows the measurement of up to three components of the flow velocity across a plane defined by a laser light sheet. The construction of a single velocity component MZI-PDV system that incorporates a phase-locking system designed to stabilise the filter is described. Measurements are made on the velocity field of a rotating disc with maximum velocities of ~±70ms-1 and an axis-symmetric air jet (with a nozzle diameter of 20mm) with an exit velocity of ~85ms-1. Standard deviations in the measured velocities were found to be about 2.9 and 2ms-1 for the two processing methods respectively. The system was then modified to make 3-component velocity measurements using imaging fibre bundles to port multiple views to a single detector head, and the standard deviation of the velocity error is around ±3ms-1 for a maximum velocity of ~±30ms-1 in the field of view. The factors that will affect the quality of the interference fringe image are investigated including polarisation sensitivity of the two beam splitters and flatness of the optical components. The inclination angle and the optical path deviation have little effect on the contrast of the interference fringes since collimated light beams, rather than divergent ones, are used in the interferometer.
|
5 |
Distributed Beamforming and Nullforming: Frequency Synchronization Techniques, Phase Control Algorithms, and Proof-Of-ConceptRahman, Muhammad Mahboob Ur 01 July 2013 (has links)
We describe a set of fundamental contributions to the design, analysis and implementation of distributed MIMO techniques in wireless networks. The main idea behind distributed MIMO is to organize groups of wireless transmitters and receivers into distributed antenna arrays to cooperatively achieve beamforming and spatial multiplexing gains in ad-hoc wireless networks. This technique promises orders-of-magnitude increases in wireless data rates, however it presupposes very stringent timing, carrier frequency and phase synchronization of the RF signals between the cooperating nodes in the array.
Specifically in this dissertation, we consider a sub-class of distributed MIMO systems called distributed MISO systems. In other words, we focus on distributed transmit arrays, wherein a group of N transmitters organize themselves into a virtual antenna array (VAA) to talk to a single-antenna receiver. While distributed MIMO involves virtual arrays on both transmit and receive ends, transmit arrays require real-time coordination, and therefore present unique challenges as compared to receive arrays.
We explore two specific MISO techniques: i) distributed beamforming and ii) distributed nullforming in this work. Beamforming involves focusing transmitted energy selectively in the direction of an intended receiver, and nullforming involves forming a "null" i.e. having the transmissions of the different array nodes cancel each other completely at a desired location. Beamforming has the potential of substantially increasing the energy efficiency of wireless communications, while nullforming allows multiple nodes to communicate simultaneously over the same frequency band by carefully canceling the resulting interference. Beamforming and nullforming can also be thought of as basic building blocks for more sophisticated MIMO techniques.
In this work, we present a set of frequency synchronization and phase control algorithms to establish and maintain a VAA for distributed beamforming and nullforming. For frequency-locking, we propose a novel distributed consensus-based algorithm. For a VAA with two nodes, we show that our algorithm achieves frequency lock globally and exponentially with a residual phase disparity that is either 0 or pi. This is in contrast to PLL-like algorithms that only achieve lock locally.
Next, we describe in detail the key ideas behind an implementation of distributed beamforming on a GNU-radio/USRP based software-defined radio (SDR) platform. We introduce a novel DSP-centric Master-Slave (MS) architecture that enables the use of low-rate DSP algorithms for synchronization of high frequency RF signals. We describe the evolution of our implementation from initially using analog signaling with Costas loops/PLLs for frequency offset estimation and compensation, to a digital signaling scheme that uses extended Kalman filters (EKF) to track and compensate for frequency offsets. The EKF-based frequency locking scheme is well-suited for packet wireless networks, e.g., WiFi, ZigBee.
We next consider phase control algorithms for forming beams and nulls with a VAA. In our experimental implementation, we have used several variants of classical 1-bit feedback control algorithm during different stages of our work. 1-bit feedback algorithm is an iterative gradient-ascent algorithm which causes the VAA nodes' signals to add constructively at a designated receiver. We present results to demonstrate the gains in the RSS at the receiver due to beamforming in the real-time settings. We also describe a distributed gradient-descent based algorithm that causes VAA nodes to achieve a null at a designated null target. We provide detailed convergence analysis for the proposed null-steering algorithm. This analysis shows that the algorithm always achieves practical null at null-target; moreover, all the spurious stationary points are locally unstable. Finally, we conclude by providing suggestions for future work.
|
6 |
Interferometric filter-based planar Doppler velocimetryLu, Zenghai January 2008 (has links)
This thesis describes the development of a Mach-Zehnder interferometric filter based
planar Doppler velocimetry (MZI-PDV) flow measurement technique. The technique
uses an entirely new optical system, an unbalanced MZI incorporating glass blocks for
wavefront-matching, to replace the iodine cell currently used in conventional PDV. The
free spectral range of the interferometric filter can be selected by adjusting the optical
path difference of the MZI. This allows the velocity measurement range, sensitivity and
resolution to be varied. This system offers no restricts to the choice of laser wavelength
of operation which is not the case with most techniques. Two techniques to process the
interference fringe images are presented. The first uses the shift of the fringe pattern to
determine the Doppler frequency shift along profiles. The second provides a full-field
measurement by normalising the received light intensity at each pixel in the image.
With the single camera MZI-PDV scheme, exact alignment of the two output images on
the active area of the camera is automatic. This eliminates the pixel-matching problem
in conventional two camera PDV systems. The technique allows the measurement of up
to three components of the flow velocity across a plane defined by a laser light sheet.
The construction of a single velocity component MZI-PDV system that incorporates a
phase-locking system designed to stabilise the filter is described. Measurements are
made on the velocity field of a rotating disc with maximum velocities of ~±70ms-1 and
an axis-symmetric air jet (with a nozzle diameter of 20mm) with an exit velocity of
~85ms-1. Standard deviations in the measured velocities were found to be about 2.9 and
2ms-1 for the two processing methods respectively. The system was then modified to
make 3-component velocity measurements using imaging fibre bundles to port multiple
views to a single detector head, and the standard deviation of the velocity error is
around ±3ms-1 for a maximum velocity of ~±30ms-1 in the field of view.
The factors that will affect the quality of the interference fringe image are investigated
including polarisation sensitivity of the two beam splitters and flatness of the optical
components. The inclination angle and the optical path deviation have little effect on the
contrast of the interference fringes since collimated light beams, rather than divergent
ones, are used in the interferometer.
|
7 |
Design of Phase-Controlled Rectifier for LED Street LampsLin, Wen-Chih 13 August 2012 (has links)
A high efficiency driver is designed for light emitting diode (LED) street lamps in the thesis. The main power conversion circuit employs a phase-controlled rectifier to convert the power from the ac mains of 110/220 V, 60 Hz directly into a dc source, providing the required output current for the street lamps formed by arrayed high brightness white LEDs. The phase-controlled rectifier of the LED driver circuit can be a conventional semi-converter or a rectifier with symmetrical phase control, which makes use of thyristors and power transistors, respectively, to regulate the LED current by means of adjusting the conduction angles in a cycle of the ac line. The phase-controlled rectifiers may exclude the use the bulky electrolyte capacitor with acceptable variation in the chromaticity and the color temperature. Operating at the low frequency, the phase-controlled rectifiers can avoid the problems of electromagnetic interference caused by high-frequency switching and adopt low cost power switches. Furthermore, a relatively high power factor can be achieved when the line source voltage varies within a small allowable range.
The research is targeted to a design of a 200 W LED street lamp. To facilitate the changes of the control functions and circuit parameters, the control circuit is realized with a microcontroller. In addition, over-voltage/current protections can be included easily. Experimental results demonstrate that the phase-controlled rectifiers with appropriately designated circuit parameters can approach a power factor of 0.92 and a circuit efficiency of 93% at the rated output.
|
8 |
Univerzální řídící jednotka technologických procesů / Universal control unit of technological processesGogola, Marek January 2010 (has links)
This diploma thesis is about design and realization of universal control unit of technologic processes in food-processing industry. The main goal of this work is to create a device, which will be able with respect to desired values and using measured data autunomusly regulate output. In this work was done the realization of the control unit both from hardware and software aspect. Designed control unit is able to change the output power according to measured temperature. Furthermore is able to control of 2 relays. To set up the desired values and control of relays is used PC software.
|
9 |
Platinum Group Metal and p-block Metal Alloy Nanoparticles and Their Catalytic Properties / 白金族元素とp-ブロック金属の新規合金ナノ粒子の創成と機能制御周, 欣 23 May 2024 (has links)
京都大学 / 新制・課程博士 / 博士(理学) / 甲第25482号 / 理博第5063号 / 新制||理||1722(附属図書館) / 京都大学大学院理学研究科化学専攻 / (主査)教授 北川 宏, 教授 有賀 哲也, 教授 堀毛 悟史 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
|
10 |
Phase Shifting Surface (PSS) and Phase and Amplitude Shifting Surface (PASS) for Microwave ApplicationsGagnon, Nicolas 14 March 2011 (has links)
This thesis describes an electrically thin surface used for electromagnetic applications in the microwave regime. The surface is free-standing and its primary purpose is to modify the phase distribution, or the phase and amplitude distribution of electromagnetic fields propagating through it: it is called phase shifting surface (PSS) in the first case, and phase and amplitude shifting surface (PASS) in the second case. For practical applications, the surface typically comprises three or four layers of metallic patterns spaced by dielectric layers. The patterns of the metallic layers are designed to locally alter the phase (and amplitude in the case of the PASS) of an incoming wave to a prescribed set of desired values for the outgoing wave. The PSS/PASS takes advantage of the reactive coupling by closely spacing of the metallic layers, which results in a larger phase shift range while keeping the structure significantly thin. The PSS concept is used to design components such as gratings and lens antennas which are presented in this document. The components are designed for an operating frequency of 30 GHz. The PSS phase grating gives high diffraction efficiency, even higher than a dielectric phase grating. Several types of lens antennas are also presented, which show comparable performance to that of a conventional dielectric plano-hyperbolic lens antenna with similar parameters. The PASS concept is used in a beam shaping application in which a flat-topped beam antenna is designed. This work demonstrates the potential for realising thin, lightweight and low-cost antennas at Ka band, in particular for substituting higher-gain antenna technologies such as conventional dielectric shaped lens antennas.
|
Page generated in 0.0827 seconds