• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Study of Mechanism for Pb-free Solder Lift-off

Su, Hsiao-lan 16 July 2009 (has links)
none
2

Effects of intermetallic compound formation on reliability of Pb-free Sn-based solders for flip chip and three-dimensional interconnects

Wang, Yiwei 17 February 2014 (has links)
The effects of intermetallic compound (IMC) formation on reliability of Pb-free Sn-based solders for flip chip and three-dimensional (3D) interconnects were studied. The dissertation is organized into four parts. In the first part, the effect of Sn grain orientation on electromigration (EM) reliability of Pb-free Sn-based flip chip solder joints was studied. The Sn grain microstructure in flip chip solder joints was characterized using the electron backscatter diffraction (EBSD) technique, and wa found to be closely related to the EM failure mechanims. The approach to grain structure optimization for improved EM reliability was also explored. In addition to the experimental work, a kinetic analysis was formulated to investigate the early EM degradation mechanism in Sn-based solder joints with Ni under-bump metallization (UMB). The aforementioned kinetic analysis, the intrinsic diffusion coefficients were not readily available in the literature. In the second part of the work, a Monte Carlo method known as simulated annealing was applied to estimate the unknown diffusion coefficients using a multi-parameter optimization method by fitting to experimental measurements. The intrinsic diffusion coefficients of Ni and Sn in Ni₃Sn₄ between 150 and 200°C, and those of Cu and Sn in Cu₃Sn and Cu₆Sn₅ between 120 and 200°C were estimatd. The activation energies for these diffusion coefficients were also determined. Together, this provides the diffusivity parameters to predict the intermetallic growth as a function of temperature. The third objective focused on the EM reliability of Sn-based microbump joints in 3D interconnects with through-silicon vias (TSVs). No EM-induced bump failure was observed, showing a robust EM reliability in microbumps. High temperature thermal annealing test was also performed on microbumps with three different metallizations in an effort to explore structural and process optimization. Finally, interfacial reaction induced stress in IMC microbumps was investigated. A numerial analysis was formulated to study the concurrent diffusion, phase transformation, and deformation in the process of IMC formation. Stress generation due to unbalanced diffusion rates and volumetric change upon phase transformation was considered. The coupled analysis was applied to investigate Ni₃Sn₄ growth in the Ni-Sn microbumping system. A simulation approach based on finite difference method with moving boundaries was employed to numerically solve stress evolution in Ni₃Sn₄. The equilibrium stress was also investigated using a modified model with a finite thickness of solder. Simulation predictions were found to be in good qualitative agreement with experimental observations. / text
3

Développement de la technique de sérigraphie pour la formation de billes de connexions inférieures a 100µm pour l'assemblage 3D : optimisation et étude de fiabilité / Stencil printing of Pb-free solder paste for formation of bumps smaller than 100μm : optimization and reliability study

Jemai, Norchene 18 February 2010 (has links)
L’assemblage et le conditionnement en électronique représentent un enjeu de création de nouveaux systèmes électroniques hybrides rassemblant sur un même substrat des éléments électroniques, optiques, mécaniques… La technologie Flip-chip , introduite par IBM et baptisée C4 (Control Collapse Chip Connection), garantit une plus grande densité d’intégration tout en gardant les mêmes dimensions de puce. Au coeur de cette technologie, le « Bumping » est un procédé qui consiste en l’introduction d’une microbille conductrice entre deux plots de connexion des puces afin de réaliser une liaison électrique et mécanique avec le niveau de packaging suivant. La technique de dépôt par sérigraphie de pâte à braser est récemment devenue pratique en raison de son adaptation aux alliages sans plomb. Cette méthode présente l'avantage d'un faible coût et d'une possible production à grande échelle. Nous avons donc choisi de développer cette technique afin d’obtenir des matrices de connexions électriques de dimensions comprises entre 50 μm et 100 μm, pour une pâte à braser de type Sn3.0Ag0.5Cu. Nous avons déterminé les paramètres de sérigraphie afin d’obtenir un minimum d’étalement de pâte pour un remplissage maximum des ouvertures du masque choisi en Ni-électroformé d’épaisseur 50μm : une vitesse de racle de 20mm/s et une vitesse de démoulage de 4mm/s sont par exemple à retenir pour une pâte de type 5. L’étude du masque de sérigraphie a conduit au choix d’ouvertures circulaires. Des formes de billes circulaires ont été obtenues pour des UBM (Under Bump Metallurgy) également circulaires, de diamètre ¼ et ½ le diamètre de l’ouverture du masque. L’optimisation du profil de refusion a permis de déterminer qu’un palier à 180°C, un TAL de 90s ou plus et une température maximale à 250°C favorisaient l’obtention de billes circulaires avec absence de vides. Pour une pâte de type 6, des billes de 60à 70μm de diamètre ont été obtenues pour des ouvertures de masque de 100μm. Une étude de fiabilité de ces billes à partir de tests de cisaillement et de l’analyse des IMC (composés intermétalliques) formés après refusion a permis de montrer que des UBM en Cr-Cu-Au, de diamètre égal à la moitié de l’ouverture du masque, permettaient d’assurer un meilleur maintien mécanique des billes / The semiconductor industry has continuously improved its products by increasing the density of integration resulting in an increasing of the I/Os, always with a low cost requirement. To obtain high-density and high-speed packaging, the Flip-Chip interconnection technology was introduced by IBM also called C4 (Control Collapse Chip Connection). Solder bumps have been widely used in electronic industry and were generally based on the Sn-Pb alloy, for its low melting point and good wetting property. Containing highly toxic element (Pb), Pb-Sn solder alloy has been banned. The ternary alloy Sn-Ag-Cu seems to be the best compromise, in fact it as physical and chemical characteristics equivalent to that of Sn-Pb.In this study we are interested to optimize stencil printing process and adjust it with the flip-chip technology, in order to obtain solder bumps which height is between 50µm and 100µm associated to pitches less than or equal to 200µm, using Sn-3.0Ag-0.5Cu solder paste. We have optimized the stencil printing parameters machine, the stencil apertures shape and size (circular shape and 50µm height, for a Ni-electroformed stencil). Spherical solder balls have been achieved with circular UBM (Under Bump Metallurgy), which diameter is ¼ and ½ the diameter of the stencil aperture. The reflow thermal profile is the key to the formation of a reliable solder bump. It must allow a homogeneous reflow for all particles of the metallic solder paste. We define a thermal profile with a Time above liquidus (TAL) of 90s, a temperature in soaking zone (Ts) of 180°C and a maximum temperature (Tmax) of 250°C. For type 6 solder pastes, balls of 60-70µm diameter have been obtained for 100µm stencil apertures.The quality of a solder joint is directly related to the adhesion of the solder ball to the substrate. Among the various methods of mechanical testing, shear testing is the most widely used to assess the strength of the attachment of beads to the substrate and determine the fragility of the ball at the interface caused by the intermetallic layer compounds (IMC) formed after the reflow step. We have shown that Cr-Cu-Au UBM, with a diameter equal to the half of the stencil aperture, ensure the mechanical adhesion of the balls
4

Electromigration enhanced kinetics of Cu-Sn intermetallic compounds in Pb free solder joints and Cu low-k dual damascene processing using step and flash imprint lithography

Chao, Huang-Lin 02 June 2010 (has links)
This dissertation constitutes two major sections. In the first major section, a kinetic analysis was established to investigate the electromigration (EM), enhanced intermetallic compound (IMC) growth and void formation for Sn-based Pb-free solder joints to Cu under bump metallization (UBM). The model takes into account the interfacial intermetallic reaction, Cu-Sn interdiffusion, and current stressing. A new approach was developed to derive atomic diffusivities and effective charge numbers based on Simulated Annealing (SA) in conjunction with the kinetic model. The finite difference (FD) kinetic model based on this approach accurately predicted the intermetallic compound growth when compared to empirical observation. The ultimate electromigration failure of the solder joints was caused by extensive void formation at the intermetallic interface. The void formation mechanism was analyzed by modeling the vacancy transport under electromigration. The effects of current density and Cu diffusivity in Sn solder were also investigated with the kinetic model. The second major section describes the integration of Step and Flash Imprint Lithography (S-FIL®) into an industry standard Cu/low-k dual damascene process. The yield on a Back End Of the Line (BEOL) test vehicle that contains standard test structures such as via chains with 120 nm vias was established by electrical tests. S-FIL shows promise as a cost effective solution to patterning sub 45 nm features and is capable of simultaneously patterning two levels of interconnect structures, which provides a low cost BEOL process. The critical processing step in the integration is the reactive ion etching (RIE) process that transfers the multilevel patterns to the inter-level dielectrics (ILD). An in-situ, multistep etch process was developed that gives excellent pattern structures in two industry standard Chemical Vapor Deposited (CVD) low-k dielectrics. The etch process showed excellent pattern fidelity and a wide process window. Electrical testing was conducted on the test vehicle to show that this process renders high yield and consistent via resistance. Discussions of the failure behaviors that are characteristic to the use of S-FIL are provided. / text

Page generated in 0.0448 seconds