• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Conservation While Under Invasion: Insights from a rare Hemiparasitic Plant, Swamp Lousewort (Pedicularis lanceolata Michx.)

Record, Sydne 01 September 2010 (has links)
with non-native invasive species is considered a major threat to many rare native species. As such, invasives removals are a common management strategy. Rare native species that interact uniquely with other organisms in their community (e.g., hemiparasitic plants) may be adversely affected by removing invasives. A management plan for a regionally rare hemiparasitic plant in Massachusetts, Pedicularis lanceolata Michx., identified invasives as a threat, but more quantitative evidence is needed to determine how P. lanceolata‟s persistence is influenced by its co-occurrence with native or invasive hosts. This research asks how P. lanceolata is affected by growth with native versus invasive hosts. Chapter I describes the species associated with P. lanceolata throughout its range, comparing areas where it is considered common and rare. Relative abundances of natives, non-native invasives, non-native non-invasives, and species with both native and non-native genotypes growing with P. lanceolata did not differ significantly at sites where the species is considered common in the Midwest compared to sites where the species is considered rare in the east. Chapter II outlines greenhouse and field removal experiments in which the types of host plants growing with P. lanceolata were manipulated. In the greenhouse, P. lanceolata growth, survival, and flowering were lower when it was growing with invasive compared to native graminoids. However, differences in P. lanceolata growth and survival when natives versus non-native were removed in the field varied from year to year due to succession of native shrubs at the site during the study. Chapter III asks how the population growth of P. lanceolata differs in uninvaded and invaded patches using an Integral Projection Model to perform population projections, sensitivity and elasticity analyses, and a life table response experiment. The population growth rate of P. lanceolata in uninvaded patches was lower than in invaded patches due to the succession of native shrubs in uninvaded patches. Chapter IV describes a metapopulation model for the invaded population of P. lanceolata in Massachusetts. The quasi-extinction probability was significantly affected by probabilities of dispersal, positive correlations in vital rates between sites, and catastrophes. These data will be used to update the management plan for P. lanceolata.
2

Fire, Soil, Native Species and Control of <em>Phalaris arundinacea</em> in a Wetland Recovery Project.

Foster, Richard Douglas 01 May 2003 (has links) (PDF)
Southern Appalachian Phalaris arundinacea control was investigated by: 1) correlating cover and species richness with soil characteristics across transects; 2) burning and herbicide use to determine conditions facilitating native plant establishment; and 3) hemi-parasitic Pedicularis lanceolata tested as a biological control. Phalaris cover was correlated with subsoil consolidation; areas without Phalaris had consolidated subsoil while Phalaris at >50% cover established on loose soil. Phalaris cover inhibited species richness (r2=0.78). No soil characteristic predicted species richness. Herbicide reduced Phalaris cover and aerial biomass by 23% and 63% respectively, compared to controls. Burning was ineffective. Two summers after herbicide Phalaris subterranean biomass remained 32% less than control biomass. Monocot transplants established readily following herbicide but dicot transplants were less likely to survive. Pedicularis parasitized Phalaris. Pedicularis’ effect on a mixed species total (r2=0.735) was non-linear; implying greater effect on large plants. Non-parasitic native plant species competition reduced biomass of Phalaris by 40%.

Page generated in 0.0711 seconds