• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A comparative study of the population dynamics of four Amaranthaceae species

Schwartz, Lauren Michele 01 August 2015 (has links) (PDF)
Some of the most problematic agricultural weeds found in the Midwest United States are found in the Amaranthaceae family, such as Amaranthus palmeri and A. tuberculatus. These summer annual weeds are troublesome due to their competitive ability, high seed production, and resistance to herbicides from several modes of action which complicates management in field crops and has led to significant yield loss. Achyranthes japonica and Iresine rhizomatosa are two perennial species in the same family as A. palmeri and A. tuberculatus that occur in similar habitats as one another, but differ in invasiveness. Achyranthes japonica is a non-native, invasive species that is becoming a threat to forested areas and has been observed along agricultural field margins. Iresine rhizomatosa also occurs in forest habitats but is an endangered species in Illinois. This research seeks to determine the comparative life history and relative competitiveness of closely related weedy species when challenged with a dominant species. Specifically, select, closely related weedy species in the Amaranthaceae plant family that occur in southern Illinois were compared, i.e., Achyranthes japonica, Amaranthus palmeri, Amaranthus tuberculatus, and Iresine rhizomatosa. The first study examined the life history characteristics of A. japonica in regards to survivorship, growth and fecundity at two sites in southern Illinois (Chapter 2). Achyranthes japonica is a relatively new invasive species that has been poorly studied. This experiment showed that regardless of site, environmental factors had a significant effect on seedling emergence and seed viability, which decreased from 2012 to 2013 during a drought year and rebounded from 2013 to 2014 following flooding. On average, individuals at the driest site had higher performance and fecundity, regardless of year. The second experiment tested the relative competitive effect and response of the Amaranthaceae species to Glycine max, first in a greenhouse study that tested shading and nitrogen resource drawdown for each species, and second in a controlled field experiment that tested intraspecific competition (Chapter 3). In addition, A. japonica seedlings were planted as either unmanipulated seedlings (uncut A. japonica) or as a seedling cut back to the soil surface at the four-node stage (cut A. japonica) at which point seedlings have reached a perennial growth stage. The greenhouse experiment showed that the four species each drew down light significantly, but not nitrogen. Shading decreased the aboveground biomass of the species in comparison to unshaded controls. Supplemental nitrogen, however, increased the aboveground biomass of A. palmeri and A. japonica. The supporting controlled field experiment showed that the competitive response of the weed species to the presence of G. max showed a reduction in height compared to the weed species grown in monocultures. Glycine max and the weed species, except I. rhizomatosa, showed a similar competitive effect and response when aboveground biomass was measured. Achyranthes japonica attained the highest belowground biomass when grown as a monoculture and in the presence of G. max. A competitive effect ranking was determined to be A. palmeri > A. tuberculatus > cut A. japonica = uncut A. japonica = I. rhizomatosa with the competitive response ranking being the inverse. The third study implemented an integral projection model (IPM) to determine the population growth rate of each species and how they compared to one another (Chapter 4). This experiment showed that A. palmeri, A. tuberculatus and A. japonica each had a population growth rate greater than one indicating rapidly growing populations. By contrast, I. rhizomatosa had a population growth rate less than one indicating a declining population. The results suggest that A. japonica has not yet shown the ability to escape management strategies in agricultural fields implemented by farmers, but it is still an aggressive invasive species that farmers and land owners need to be able to identify. This species has many similar characteristics to the Amaranthus species, such as the ability to colonize in areas with limiting resources, continual flushes of germination throughout the growing season, the ability to outcompete other weed species, and high fecundity but, A. japonica also is a perennial species that can withstand removal of shoot material and has a high germination rate. Based on these results, only early detection and rapid response methods should be relied on to keep these species out of areas in and around agricultural fields. Iresine rhizomatosa’s performance in these studies was consistent with its rarity.
2

The Ecology of Sharing Mutualists: Consequences for Plant Performance and Population Dynamics

Fleming-Davies, Arietta Elise January 2010 (has links)
<p>Although we often study mutualisms (interactions in which both species benefit) at the level of the individual partners, mutualistic interactions take place in the context of populations and communities. Sharing mutualists with others in a population could result in indirect interactions in the form of mutualist-mediated competition or facilitation. In my dissertation work I asked whether intraspecific competition or facilitation for ants might occur in an extrafloral nectary-bearing (EFN) plant, and what the consequences would be for long-term population dynamics of the plant. My focal species was <italic>Colubrina spinosa</italic> (Rhamnaceae), a neotropical treelet on which I observed 69 ant species at La Selva Biological Station, Costa Rica. </p><p> Demonstrating intraspecific competition for mutualists requires that 1) neighbor densities affect mutualist visits to an individual, and 2) change in mutualist visits results in reduced benefit. To determine how mutualist density affects plant benefit, I experimentally manipulated ant abundances on plants over two years and measured growth and survival. To assess competition for mutualists, I excluded ants from conspecific neighbors and followed ant abundance on focal plants. To consider long-term facilitation, in which greater local nectar resources increase local ant abundance, I manipulated nectar resources in a two-year field experiment and estimated ant abundance on <italic>C. spinosa</italic> plants and on baits. </p><p> Considering local neighbor density both within a 1m radius and in 5x5 m plots, ant densities on <italic>C. spinosa</italic> plants showed evidence for a small-scale competition effect and a contrasting plot-level facilitation effect. The small-scale competition was sized-based; smaller plants lost ants to larger plants. Ant benefit to plants also depended on plant size. For larger plants, those with greater size-adjusted ant density had higher growth and survival than those with fewer ants than expected for their size. </p><p> To determine whether these contrasting competition and facilitation effects could impact population growth or densities, I modeled population dynamics with an integral projection model (IPM). Growth and survival were functions of ant density, which in turn depended on conspecific neighbors, plant size, and mean background ants. Results suggest that larger-scale facilitation of mutualists impacts long-term population growth more than small-scale competition. Population growth rate increased with increasing background ant density, which depended on facilitation at the 5x5m plot scale. In contrast, small-scale competition caused a redistribution of mutualist ants among plants of different sizes, but had very little effect on long-term population growth. </p><p> I thus conclude that on the scale of individuals there is evidence of intraspecific competition for ants as well as facilitation in the EFN plant <italic>C. spinosa</italic>, but only facilitation effects lead to appreciable changes in population dynamics. If mutualist-mediated facilitation effects tend to occur over long time scales in other systems as well, facilitation might prove to be more important than competition in other mutualisms.</p> / Dissertation
3

Conservation While Under Invasion: Insights from a rare Hemiparasitic Plant, Swamp Lousewort (Pedicularis lanceolata Michx.)

Record, Sydne 01 September 2010 (has links)
with non-native invasive species is considered a major threat to many rare native species. As such, invasives removals are a common management strategy. Rare native species that interact uniquely with other organisms in their community (e.g., hemiparasitic plants) may be adversely affected by removing invasives. A management plan for a regionally rare hemiparasitic plant in Massachusetts, Pedicularis lanceolata Michx., identified invasives as a threat, but more quantitative evidence is needed to determine how P. lanceolata‟s persistence is influenced by its co-occurrence with native or invasive hosts. This research asks how P. lanceolata is affected by growth with native versus invasive hosts. Chapter I describes the species associated with P. lanceolata throughout its range, comparing areas where it is considered common and rare. Relative abundances of natives, non-native invasives, non-native non-invasives, and species with both native and non-native genotypes growing with P. lanceolata did not differ significantly at sites where the species is considered common in the Midwest compared to sites where the species is considered rare in the east. Chapter II outlines greenhouse and field removal experiments in which the types of host plants growing with P. lanceolata were manipulated. In the greenhouse, P. lanceolata growth, survival, and flowering were lower when it was growing with invasive compared to native graminoids. However, differences in P. lanceolata growth and survival when natives versus non-native were removed in the field varied from year to year due to succession of native shrubs at the site during the study. Chapter III asks how the population growth of P. lanceolata differs in uninvaded and invaded patches using an Integral Projection Model to perform population projections, sensitivity and elasticity analyses, and a life table response experiment. The population growth rate of P. lanceolata in uninvaded patches was lower than in invaded patches due to the succession of native shrubs in uninvaded patches. Chapter IV describes a metapopulation model for the invaded population of P. lanceolata in Massachusetts. The quasi-extinction probability was significantly affected by probabilities of dispersal, positive correlations in vital rates between sites, and catastrophes. These data will be used to update the management plan for P. lanceolata.
4

Démographie et réponses adaptatives des populations végétales aux changements environnementaux / Demography and adaptive responses of plant populations to environmental changes

Hadjou Belaid, Asma 13 November 2018 (has links)
La région méditerranéenne, hot-spot de biodiversité avec un fort taux d'endémisme, est classée parmi les zones les plus touchées par le changement climatique. La conservation des espèces nécessite de comprendre finement leur démographie face à ces changements, mais aussi leur capacité à s’adapter à ces nouvelles conditions. Au cours de cette thèse, deux espèces végétales rares méditerranéennes ont été étudiées, Centaurea corymbosa et Brassica insularis, en utilisant des modèles mathématiques récents pour analyser des suivis démographiques de long-terme (22 ans et 18 ans). Dans la première partie de cette thèse, des modèles de projection matriciels ont été construits afin d’analyser la variation spatio-temporelle des taux d’accroissement des populations de C. corymbosa. Cela a permis d'identifier les facteurs climatiques clefs qui impactent les taux d’accroissement des populations, et plus finement, les paramètres de survie, de floraison et de fécondité. Une analyse de viabilité des populations a été réalisée sous différents scénarios climatiques. Dans un second temps, une analyse de la capacité des populations de C. corymbosa à répondre à ces changements climatiques a été effectuée avec un modèle de projection intégral. Les changements des traits d’histoire de vie au cours du temps ont montré que la stratégie de floraison observée répond aux variations climatiques en suivant la même direction que la stratégie optimale. Ceci montre que les populations sont capables de s’adapter au changement climatique. Enfin, des modèles de capture-recapture (CR) ont été construits afin de déterminer l’influence de la faible détectabilité des individus sur l’estimation des paramètres démographiques chez B. insularis. Les probabilités de survie estimées par l’approche classique sont inférieures à celles estimées par les modèles CR. Les paramètres estimés par les deux approches sont en général très corrélés, à l'exception d'une population montrant des problèmes d'identification des individus. L'ensemble de cette thèse est replacé dans le cadre de la biologie de la conservation des espèces végétales, notamment en suggérant de prendre en compte leur capacité de réponse au changement climatique. / Mediterranean region is a biodiversity hot-spot with a high endemism rate and is classified among the areas most sensitive to climate change. Deep understanding of demography and evolution following these changes is a necessity for species conservation. During this thesis, two rare Mediterranean plant species have been studied, Centaurea corymbosa and Brassica insularis, using recent mathematical models to analyse long term demographic datasets (22 and 18 years). In the first part of this thesis, matrix projection models have been used to analyse spatio-temporal variation in population growth rate in C. corymbosa. Major climatic parameters that impact population growth rate and survival, flowering and fecundity have been identified. A population viability analysis has been performed under various climatic scenarios. In a second part, an analysis of the population ability of C. corymbosa to response to these climatic changes has been performed using integral projection models. Temporal variation of life-history traits showed that the realized flowering strategy varied with climatic conditions following the same direction than the optimal flowering strategy. It can thus be concluded that the studied populations can adapt to climatic changes. Finally, capture-recapture models have been applied on the Brassica insularis dataset to analyse the effect of plant detectability on demographic parameter estimations. Survival probabilities obtained with the classical approach are lower than the ones estimated using the CR models. However, the parameters estimated using both methods are highly correlated, except for one population where individual identification is problematic. Results of this thesis are linked to some considerations in conservation biology of plants, particularly in link to their ability to respond to climatic changes.
5

Linking plant population dynamics to the local environment and forest succession

Dahlgren, Johan Petter January 2008 (has links)
Linking environmental variation to population dynamics is necessary to understand and predict how the environment influences species abundances and distributions. I used demographic, environmental and trait data of forest herbs to study effects of spatial variation in environmental factors on populations as well as environmental change in terms of effects of forest succession on field layer plants. The results show that abundances of field layer species during forest succession are correlated with their functional traits; species with high specific leaf area increased more in abundance. I also found that soil nutrients affect vegetative and flowering phenology of the forest herb Actaea spicata. The effect of nutrients shows that a wider range of environmental factors than usually assumed can influence plant phenology. Moreover, local environmental factors affected also the demography of A. spicata through effects on vital rates. An abiotic factor, soil potassium affecting individual growth rate, was more important for population growth rate than seed predation, the most conspicuous biotic interaction in this system. Density independent changes in soil potassium during forest succession, and to a lesser extent plant population size dependent seed predation, were predicted to alter population growth rate, and thereby the abundance, of A. spicata over time. Because these environmental factors had effects on population projections, they can potentially influence the occupancy pattern of this species along successional gradients. I conclude that including deterministic, as opposed to stochastic, environmental change in demographic models enables assessments of the effects of processes such as succession, altered land-use, and climate change on population dynamics. Models explicitly incorporating environmental factors are useful for studying population dynamics in a realistic context, and to guide management of threatened species in changing environments.

Page generated in 0.1806 seconds