• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characterisation of mites and peniciccium species associated with apple core rot diseases

Van der Walt, Lene 03 1900 (has links)
Thesis (MSc (Plant Pathology))--University of Stellenbosch, 2009. / ENGLISH ABSTRACT: Dry core rot (DCR) and wet core rot (WCR) are among some of the most important postharvest diseases of apples in South Africa. Mouldy core (MC) is also a symptom associated with the core region of apples, but it is not of economical importance since apple tissue surrounding the core region is not affected as is the case with DCR and WCR. The incidence of core rots in harvested fruits can be as high as 12%, but in general ranges from 3 to 8%. Infections and losses can also occur during fruit handling in pack houses and during storage. Additionally, yield losses also occur prior to harvest within orchards due to premature fruit drop of core rot affected fruits. The incidence of core rot diseases in apples differ among apple cultivars, with most Red Delicious varieties being susceptible to the development of core rots, whereas core rots have rarely been reported in other cultivars such as Granny Smith. The etiology and epidemiology of WCR and DCR are poorly understood. Although many fungal genera have been associated with the diseases, small-spored Alternaria species are mainly associated with DCR, whereas Penicillium species including P. roquefortii, P. expansum and P. funiculosum have mainly been associated with WCR. Dry core rot infections have long been known to occur pre-harvest, whereas WCR is primarily known as a post-harvest disease where infections take place during fruit handling in pack houses. Recently, Tarsonemus mites have also been indicated as being a potential role player in the etiology of core rot diseases. The mites have been hypothesised to carry pathogen spores into the core region of apples, and they may also possibly cause small wounds that facilitate pathogen entry. In South Africa, apple growers have recently reported WCR as being present prior to harvest, which has not been reported previously. Therefore, the first aim of the study was to investigate the incidence, as well as the causal agent/s of pre-harvest WCR. The incidence of WCR ranged from 0% to 1.7% in eleven orchards, and was in general lower than that of DCR (0.4% to 6%). Isolation studies from eight internal positions in WCR apples showed that Penicillium was the predominant fungal genus in most of the positions, including the lesion area. Morphological and molecular characterisation of Penicillium isolates from WCR showed that P. 2 ramulosum prov. nom. was the main species isolated from lesions, as well as other isolation positions. However, this species was also the main species isolated from DCR, MC and asymptomatic apples. Penicillium expansum was only isolated at low frequencies from WCR and DCR apples. Other Pencillium species that were occasionally isolated included P. glabrum, P. chloroloma, P. chermisinum and a putative new species with closest affinity to P. dendriticum (P. species aff. dendriticum) on a DNA nucleotide sequence basis. Pathogenicity and virulence studies using three different inoculation methods showed that P. expansum was the most virulent species, followed by P. species aff. dendriticum. The P. ramulosum prov. nom. isolates varied in their virulence, but were all considered to have low virulence. The role of Tarsonemus mites in the etiology and epidemiology of core rot diseases is poorly understood, and therefore the second aim of the study was to investigate some of these aspects. The specific aims of the study were to (1) investigate the ecology of Tarsonemus mites in Red Delicious and Granny Smith orchards during different apple developmental stages, (2) determine if there is a significant association of Tarsonemus mites with diseased (WCR and DCR) fruits and (3) determine if potential core rot pathogenic fungi are associated with the mites. Tarsonemus mites were found in all of the investigated apple developmental stages (buds, blossoms, 4cm diameter fruit, mature fruit and mummies), having the highest incidence in mummies and mature fruits from Red Delicious and Granny Smith orchards. In Red Delicious fruits the Tarsonemus mites were found within the core and/or calyx tube, whereas in Granny Smith fruits the mites were restricted to the calyx tube. In Red Delicious fruits there was a significant association between dry core rot as well as total core rot (wet- and dry-core rot) with the presence of mites in the core, as well as total mites (mites in core and calyx tubes). Fungal isolation studies from the Tarsonemus mites showed that they carried potential core rot fungal pathogens within the genera Penicillium and Alternaria. The Penicillium species isolated from the mites included two of the most virulent WCR species, P. expansum and P. species aff. dendriticum. / AFRIKAANSE OPSOMMING: Droë kernvrot and nat kernvrot is van die belangrikste na-oes siektes van appels in Suid- Afrika. Beskimmelde kern word ook met die kern van appels geassosieer, maar hierdie toestand is egter nie van ekonomiese belang nie, aangesien die weefsel rondom die kern nie geaffekteer word soos in die geval van nat- en droë kernvrot nie. Die voorkoms van kernvrot in vrugte na oes, kan vlakke van tot 12% bereik, maar oor die algemeen is die voorkoms tussen 3 en 8%. Infeksie en verliese kan ook voorkom gedurende die hantering en verpakking van vrugte in pakhuise en gedurende storing. Addisionele verliese in opbrengs kan ook voor-oes voorkom in boorde. Dit is te wyte aan voortydige vrugval van appels wat besmet is met kernvrot. Die voorkoms van kernvrot by appels verskil tussen kultivars. Meeste van die “Red Delicious” variëteite is vatbaar vir die ontwikkeling van kernvrot. Die toestand is egter skaars by ander kultivars soos Granny Smith. Die etiologie en epidemiologie van nat- en droë kernvrot word nie goed verstaan nie. ‘n Groot aantal swamgenera is al met kernvrot geassosieer. Klein-spoor Alternaria spesies word hoofsaaklik met droë kernvrot geassosieer en Penicillium spesies, insluitende P. roquefortii, P. expansum en P. funiculosum, word meestal met nat kernvrot geassosieer. Dit is lank reeds bekend dat droë kernvrot as voor-oes siekte kan voorkom, maar nat kernvrot is algemeen bekend as na-oes siekte waar infeksie tydens vrughantering en verpakking plaasvind. Daar is onlangs aangedui dat Tarsonemus myte potensiële rolspelers in die etiologie van kernvrot is. Hipoteties is die myte in staat om spore van die patogene in die kern van die appels in te dra, asook om klein wonde te veroorsaak wat infeksie deur patogene vergemaklik. In Suid-Afrika is nat kernvrot wat voor-oes in die boorde ontstaan onlangs deur boere aangemeld; hierdie toestand is nog nie op ‘n vorige geleentheid aangemeld nie. Die eerste doelwit van hierdie studie was dus om die voorkoms en veroorsakende organisme/s van voor-oes nat kernvrot te ondersoek. Die voorkoms van nat kernvrot was tussen 0 en 1.7% in elf boorde en was oor die algemeen laer as die voorkoms van droë kernvrot (0.4 tot 6%). Isolasiestudies uit agt interne posisies van nat kernvrot appels het getoon dat Penicillium die dominante swamgenus in die meeste posisies was, insluitend die letsels. Morfologiese en molekulêre karakterisering van 4 Penicillium isolate uit nat kernvrot letsels het aangedui dat P. ramulosum prov. nom. die spesie is wat die meeste geïsoleer is vanuit die letsels, asook ander isolasie posisies. Dié spesie was egter ook die mees algemene spesie wat uit nat- en droë kernvrot, asimptomatiese appels en appels wat slegs swamgroei in die kern gehad het, geïsoleer is. Penicillium expansum was ook in lae getalle uit nat- en droë kernvrotletsels geïsoleer. Ander Penicillium spesies wat ook soms geïsoleer is, sluit P. glabrum, P. chloroloma, P. chermisinum, asook ‘n moontlik nuwe spesie wat op DNA volgorde basis die naaste aan P. dendriticum (P. spesie aff. dendriticum) is. Studies wat patogenesiteit en virulensie van die isolate ondersoek het, is ook uitgevoer deur gebruik te maak van drie verskillende inokulasie metodes. Die studies het aangedui dat P. expansum die mees virulente spesie is, gevolg deur P. spesie aff. dendriticum. Die P. ramulosum prov. nom. isolate het variasie in virulensie getoon maar is oor die algemeen aanvaar om minder virulent te wees. Die rol van Tarsonemus myte in die etiologie en epidemiologie van kernvrot word nie goed verstaan nie en dus was die tweede doelwit van die studie om sommige van dié aspekte te ondersoek. Die spesifieke doelwitte was (1) om die ekologie van die Tarsonemus myte in “Red Delicious” en Granny Smith boorde tydens verskillende ontwikkelingstadiums van die appels te ondersoek, (2) om te bepaal of daar ‘n betekenisvolle assosiasie van Tarsonemus myte met siek (nat- en droë kernvrot) vrugte bestaan en (3) om te bepaal of potensiële kernvrot patogeniese swamme geassosieer is met die myte. Tarsonemus myte is gevind in al die ontwikkelingstadiums (knoppies, bloeisels, 4 sentimeter deursnee vrugte, volwasse vrugte en mummies) van appels wat ondersoek is. Die hoogste voorkoms van myte was in die mummies en volwasse vrugte van “Red Delicious”, asook Granny Smith kultivars gevind. In “Red Delicious” vrugte is myte in die kern en/of kaliksbuis gevind, maar in die Granny Smith vrugte was die myte tot die kaliksbuis beperk. In “Red Delicious” vrugte was daar ‘n betekenisvolle assosiasie tussen droë kernvrot, asook totale kernvrot (nat en droë kernvrot) met die teenwoordigheid van myte in die kern, asook totale myte (myte in die kern en kaliksbuis). Swam isolasiestudies vanaf die Tarsonemus myte het aangetoon dat potensiële kernvrot swampatogene in die genera Penicillium en Alternaria wel by die myte teenwoordig was. Die Penicillium spesies wat vanaf die myte geïsoleer is het twee van die mees virulente nat kernvrot spesies ingesluit, nl. P. expansum en P. spesie aff. dendriticum.
2

ALLYL ISOTHIOCYANATE DERIVED FROM ORIENTAL MUSTARD MEAL AS A NATURAL ANTIMICROBIAL TO INHIBIT THE GROWTH OF MOULDS ON BREAD

Ma, Jianhua 14 September 2012 (has links)
This thesis is an investigation of the potential of Allyl Isothiocyanate (AITC) derived from oriental mustard meal (Brassica juncea meal) as a natural preservative suppression moulds growth on bread. Currently, clean labels and natural antimicrobial agents are interests of alternative preservatives. In this study, an antimicrobial sachet/patch containing B. juncea meal was developed to produce AITC vapour in situ; the efficacy of gaseous AITC/B. juncea meal on suppression of Penicillium spp. and other mould growth was investigated. The growth was completely inhibited for 28 days at 23˚C in the presence of 0.7-1.3 ppm AITC in the headspace (released from 50-100 mg B. juncea meal). Fifty mg mustard meal showed fungistatic activity, and ≥100 mg were fungicidal. The shelf life of sliced white bread (600 g) was prolonged for 14 days using 3g of B. juncea meal at 23˚C thereby illustrating the potential of AITC as an alternative to chemical preservatives. / Developing Innovation Agricultural Products (DIAP) program of AAFC and Mustard 21 (RBPI 2109)
3

Fungos anemófilos e leveduras isolados em ambientes de laboratórios de microbiologia em Instituição de Ensino Superior / Airborne fungi and yeasts isolated in microbiology laboratories environments in Higher Education Institution

Martins, Otávia de Almeida 25 February 2016 (has links)
Submitted by Ubirajara Cruz (ubirajara.cruz@gmail.com) on 2017-07-05T16:00:01Z No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Otavia_Martins.pdf: 1248532 bytes, checksum: 732a038ac2a908e98da415247668b37e (MD5) / Approved for entry into archive by Aline Batista (alinehb.ufpel@gmail.com) on 2017-07-05T19:22:33Z (GMT) No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Otavia_Martins.pdf: 1248532 bytes, checksum: 732a038ac2a908e98da415247668b37e (MD5) / Made available in DSpace on 2017-07-05T19:22:33Z (GMT). No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Otavia_Martins.pdf: 1248532 bytes, checksum: 732a038ac2a908e98da415247668b37e (MD5) Previous issue date: 2016-02-25 / Sem bolsa / Os fungos presentes no ar atmosférico são denominados anemófilos, sendo este habitat o meio de dispersão mais utilizado por esses microrganismos, que possuem a capacidade de colonizar diferentes substratos de forma singular e eficiente. Assim, dificilmente pode existir ambiente livre de contaminação fúngica. As concentrações de fungos no ambiente sofrem influências de diversos fatores, incluindo variáveis ambientais e fatores físicos que podem aumentar a quantidade de propágulos no ambiente. Os fungos anemófilos podem causar problemas como a deterioração de materiais, alergias, intoxicações e infecções. Assim, a presença desses microrganismos em laboratórios de microbiologia pode causar grandes problemas econômicos, de qualidade diagnóstica e relacionados à pesquisa, além das possibilidades de causar prejuízo à saúde das pessoas que trabalham no local. Ao fazer-se uso das normas de biossegurança, o monitoramento de fungos torna-se, então, necessário para um adequado controle ambiental, evitando assim contaminações e infecções. O objetivo deste trabalho foi realizar o isolamento e identificação da microbiota fúngica ambiental presente em nove laboratórios de ensino, pesquisa e extensão da Universidade Federal de Pelotas (UFPel) durante o período de fevereiro a novembro de 2015, abrangendo as quatro estações. A técnica utilizada foi de sedimentação em placa de Petri contendo meio Ágar Sabouraud dextrose com adição de cloranfenical. Durante o estudo foram coletadas 228 placas mensais provenientes de coletas semanais dos nove laboratórios totalizando 912 placas no final do experimento, das quais foram isoladas um total de 5101 Unidades Formadoras de Colônias (UFC). Conforme a sazonalidade, o outono foi a estação que apresentou maior número de UFC, correspondendo a 35% (1808/5101) do total encontrado, já no inverno obteve-se apenas 17,3% (884/5101). Em relação ao isolamento fúngico, o gênero Cladosporium representou 46,3% do total de UFC, seguido de Penicillium e de fungos não caracterizados quanto ao gênero, em decorrência da ausência de micélio reprodutivo, sendo então classificados como “micélio aéreo estéril”. Não houve diferença significativa entre o número de UFC encontradas nos distintos laboratórios, assim como também não houve diferença no número de UFC encontradas nos distintos ambientes pertencentes aos laboratórios. Os gêneros prevalentes foram Cladosporium e Penicillium. / The fungi present in atmospheric air are called airborne, which is the dispersion medium habitat most used by these microorganisms, which have the ability to colonize different natural substrates and efficiently. Thus, there can hardly fungal contamination-free environment. Fungal concentrations in the environment are influenced by several factors, including environmental factors and physical factors that can increase the number of propagules in the environment. The airborne fungi can cause problems such as deterioration of materials, allergies, poisoning and infections. Thus, the presence of these microorganisms in microbiology laboratories can cause major economic problems, diagnostic and research related to quality, and the potential to cause harm to the health of the people working on site. When making up the use of bio-security standards, monitoring of fungi becomes then necessary for proper environmental control, thus avoiding contamination and infections. The aim of this study was the isolation and identification of the fungal microbiota present in nine teaching laboratories, research and extension of the Federal University of Pelotas (UFPel) during the period from February to November 2015, covering the four seasons. The technique used was settling in Petri dishes containing Sabouraud dextrose agar medium with added cloranfenical. During the study were collected 228 monthly cards from weeks collection of nine laboratories totaling 912 cards at the end of the experiment, which were isolated from a total of 5101 Colony Forming Units (CFU). As the seasonal, autumn was the season that had the highest number of CFU, corresponding to 35% (1808/5101) of the total found, already in winter yielded only 17.3 % (884/5101). Compared to fungal isolation, Cladosporium genre represented 46.3 % of the CFU, followed by Penicillium fungi and not characterized as gender, due to the absence of reproductive mycelium, then being classified as "sterile aerial mycelium". There was no significant difference between the number of CFU found in different laboratories, as well as there was no difference in the number of CFUs in different environments belonging to the laboratories. The prevalent genera were Cladosporium and Penicillium.
4

Incidence and etiology of maize seedling blight and control of soil borne pathogens using seed treatments / Johnny Viviers

Viviers, Johnny January 2014 (has links)
Seedling blight of maize has significantly influenced field crop stands and seedling vigour over various localities and seasons. The extent of the problem is influenced by a number of factors which includes soil temperature (generally below 13 °C), waterlogged soils, inadequate fertilization, herbicide damage and fungal pathogens. The fungi generally causing seedling damping off are often involved in a complex and succession over time varying in importance depending on the field circumstances at a given time. These generally include the Pythium spp., Rhizoctonia spp. and various Fusarium spp. These have been recorded in a number of studies conducted by local researchers in the late 1980’s and early 1990’s on sorghum but to a lesser degree on maize. Uncertainty regarding the status of the etiology of maize seedling blights as maize production practices have changed dramatically in the last 10 years with increased plant populations, reduced tillage, increased crop rotation options and new short season maize hybrids. It is therefore essential to determine the present status of seedling blights in South Africa to confirm the necessity of fungicide seed treatments to ensure adequate plant densities and seedling vigour. Cob and tassel smut caused by Sphacelotheca reiliana is a disease of maize that was a problem in the 1970’s. Due to improved fertilisation, fungicide seed treatments and hybrid resistance this disease was reduced to such levels that the disease was only found to occur on research farms where seedlings were inoculated. Since 2007, the disease was reported to reach epidemic proportions on the heavy clay soils in the Standerton area. This disease has since spread over the last seven seasons to a range including northern KwaZulu/Natal, namely as far as Underberg/Swartberg, the Witbank, Ermelo, Middelburg and Delmas area in Mpumalanga and to Harrismith in the eastern Free State maize production area. This may be due to susceptible hybrids coming onto the local market or the inability of traditional fungicide seed treatments to contain infection. New and unregistered seed treatments available will be tested for their ability to control cob and tassel smut in two fields over two seasons. The aims of this dissertation were to determine the extent of the seedling blight problem in commercial fields throughout the maize industry. To determine the efficacy of fungicide seed treatments for the control of maize seedling blights using both field and greenhouse studies, and to determine the efficacy of fungicide seed treatments for the control of cob and tassel smut of maize in field trials. A total of 101 localities were sampled throughout the maize producing region of South Africa with root discolouration varying from 0 to 90 % root discolouration. Seventy different fungal species were isolated from the maize seedlings roots which include species such as Aspergillus, Clonostachus, Fusarium, Trichoderma and Penicillium. The most commonly isolated fungi which included Aspergillus niger, Fusarium solani, Fusarium verticillioides and Fusarium oxysporum were evaluated in glasshouse studies to determine their pathogenicity. Pathogenicity differed between isolates of the same fungal species, which were collected from different geographical regions, in the glasshouse studies. Field trials for seedling blight disease showed significant differences between the localities (P < 0.001) the trials were planted at, and between seed treatments. Significant season (P < 0.001) and locality (P < 0.05) differences were also found for cob and tassel smut trials planted at Potchefstroom, North-West province and Greytown, KwaZulu/Natal Province respectively. Fungicide seed treatments also showed significant differences for cob and tassel smut regarding plants infected (P < 0.001) and yield loss (P < 0.05). Overall seed treatments can be seen as an effective controlling agent for the control of seed- and soil-borne fungi on maize. / MSc (Environmental Sciences), North-West University, Potchefstroom Campus, 2015
5

Incidence and etiology of maize seedling blight and control of soil borne pathogens using seed treatments / Johnny Viviers

Viviers, Johnny January 2014 (has links)
Seedling blight of maize has significantly influenced field crop stands and seedling vigour over various localities and seasons. The extent of the problem is influenced by a number of factors which includes soil temperature (generally below 13 °C), waterlogged soils, inadequate fertilization, herbicide damage and fungal pathogens. The fungi generally causing seedling damping off are often involved in a complex and succession over time varying in importance depending on the field circumstances at a given time. These generally include the Pythium spp., Rhizoctonia spp. and various Fusarium spp. These have been recorded in a number of studies conducted by local researchers in the late 1980’s and early 1990’s on sorghum but to a lesser degree on maize. Uncertainty regarding the status of the etiology of maize seedling blights as maize production practices have changed dramatically in the last 10 years with increased plant populations, reduced tillage, increased crop rotation options and new short season maize hybrids. It is therefore essential to determine the present status of seedling blights in South Africa to confirm the necessity of fungicide seed treatments to ensure adequate plant densities and seedling vigour. Cob and tassel smut caused by Sphacelotheca reiliana is a disease of maize that was a problem in the 1970’s. Due to improved fertilisation, fungicide seed treatments and hybrid resistance this disease was reduced to such levels that the disease was only found to occur on research farms where seedlings were inoculated. Since 2007, the disease was reported to reach epidemic proportions on the heavy clay soils in the Standerton area. This disease has since spread over the last seven seasons to a range including northern KwaZulu/Natal, namely as far as Underberg/Swartberg, the Witbank, Ermelo, Middelburg and Delmas area in Mpumalanga and to Harrismith in the eastern Free State maize production area. This may be due to susceptible hybrids coming onto the local market or the inability of traditional fungicide seed treatments to contain infection. New and unregistered seed treatments available will be tested for their ability to control cob and tassel smut in two fields over two seasons. The aims of this dissertation were to determine the extent of the seedling blight problem in commercial fields throughout the maize industry. To determine the efficacy of fungicide seed treatments for the control of maize seedling blights using both field and greenhouse studies, and to determine the efficacy of fungicide seed treatments for the control of cob and tassel smut of maize in field trials. A total of 101 localities were sampled throughout the maize producing region of South Africa with root discolouration varying from 0 to 90 % root discolouration. Seventy different fungal species were isolated from the maize seedlings roots which include species such as Aspergillus, Clonostachus, Fusarium, Trichoderma and Penicillium. The most commonly isolated fungi which included Aspergillus niger, Fusarium solani, Fusarium verticillioides and Fusarium oxysporum were evaluated in glasshouse studies to determine their pathogenicity. Pathogenicity differed between isolates of the same fungal species, which were collected from different geographical regions, in the glasshouse studies. Field trials for seedling blight disease showed significant differences between the localities (P < 0.001) the trials were planted at, and between seed treatments. Significant season (P < 0.001) and locality (P < 0.05) differences were also found for cob and tassel smut trials planted at Potchefstroom, North-West province and Greytown, KwaZulu/Natal Province respectively. Fungicide seed treatments also showed significant differences for cob and tassel smut regarding plants infected (P < 0.001) and yield loss (P < 0.05). Overall seed treatments can be seen as an effective controlling agent for the control of seed- and soil-borne fungi on maize. / MSc (Environmental Sciences), North-West University, Potchefstroom Campus, 2015

Page generated in 0.1032 seconds