Spelling suggestions: "subject:"pentameric"" "subject:"centrameric""
1 |
The Development of Direct Ultra-Fast PCR for Forensic Genotyping Using Short Channel Microfluidic Systems With Enhanced Sieving MatricesAboud, Maurice J 16 July 2012 (has links)
There are situations in which it is very important to quickly and positively identify an individual. Examples include suspects detained in the neighborhood of a bombing or terrorist incident, individuals detained attempting to enter or leave the country, and victims of mass disasters. Systems utilized for these purposes must be fast, portable, and easy to maintain. The goal of this project was to develop an ultra fast, direct PCR method for forensic genotyping of oral swabs.
The procedure developed eliminates the need for cellular digestion and extraction of the sample by performing those steps in the PCR tube itself. Then, special high-speed polymerases are added which are capable of amplifying a newly developed 7 loci multiplex in under 16 minutes. Following the amplification, a postage stamp sized microfluidic device equipped with specially designed entangled polymer separation matrix, yields a complete genotype in 80 seconds. The entire process is rapid and reliable, reducing the time from sample to genotype from 1-2 days to under 20 minutes. Operation requires minimal equipment and can be easily performed with a small high-speed thermal-cycler, reagents, and a microfluidic device with a laptop. The system was optimized and validated using a number of test parameters and a small test population. The overall precision was better than 0.17 bp and provided a power of discrimination greater than 1 in 106.
The small footprint, and ease of use will permit this system to be an effective tool to quickly screen and identify individuals detained at ports of entry, police stations and remote locations. The system is robust, portable and demonstrates to the forensic community a simple solution to the problem of rapid determination of genetic identity.
|
2 |
The Structural Basis for Lipid-Dependent Uncoupling of the Nicotinic Acetylcholine ReceptorSun, Jiayin January 2017 (has links)
In lipid membranes lacking activating lipids, the nicotinic acetylcholine receptor adopts an uncoupled conformation that binds ligand, but does not transition into an open conformation. Understanding the mechanisms of lipid-dependent uncoupling is essential to understanding lipid-nAChR interactions, which may be implicated in pathological conditions such as nicotine addition. Here, I tested two structural features of a proposed uncoupling method to elucidate the mechanism of lipid-dependent uncoupling. First, infrared measurements and electrophysiological characterization performed in prokaryotic homologues indicate that lipid sensitivity is largely controlled by the most peripheral α-helix in the transmembrane domain, M4. My data show that tighter association of M4 with the adjacent M1 and M3 transmembrane α-helices decreases a receptor’s propensity to adopt a lipid-dependent uncoupled conformation. Second, I indirectly tested the hypothesis that uncoupling results from a conformational change at the extracellular/transmembrane domain interface that leads to an increased separation between the two domains and ultimately to a constriction of the channel pore. Finally, biophysical studies presented in this dissertation shed light on the complex binding of a number of non-competitive channel blockers to the nicotinic acetylcholine receptor channel pore in both the resting and desensitized states. The data provide further insight into the structural rearrangements that occur upon uncoupling of ligand binding and gating in the nicotinic acetylcholine receptor.
|
3 |
Modulation of a model ligand-gated ion channel by amphetamine derivativesKarlsson, Emelia January 2022 (has links)
Pentameric ligand-gated ion channels are critical mediators of electrochemical signal transduction in neurons and other excitable cells, causing them to be important targets of psychoactive drugs. Structural data for these complex proteins are limited, particularly among eukaryotic family members and for the functionally critical open state. These data limitations cause knowledge gaps regarding the mechanisms of ion channel opening, gating, and modulation. However, a newly discovered bacterial family member, known as sTeLIC, shares numerous structural features with its eukaryotic relatives in our central nervous system. A recently solved electron microscopy structure depicts sTeLIC in an apparent open state with binding pockets in its extracellular domain, compatible with binding a drug with structural similarities to amphetamines, like the 4-bromoamphetamine. This project aims to provide the first structure-function evidence for direct modulation of a pentameric ligand-gated ion channel by an amphetamine. The two most essential tools used in this project to examine the effects of 4-bromoamphetamine on sTeLIC were Xenopus laevis oocytes and two-electrode voltage-clamp. These tools were necessary for the collection of gating and modulation data. Ion channel activities can be analysed by clamping sTeLIC injected Xenopus laevis oocytes into the two-electrode voltage-clamp since it can artificially control the membrane voltage of oocytes. Modulation data show that 4-bromoamphetamine is a bimodal allosteric potentiator, as well as an allosteric agonist. Residues Y104 and W75, located in the binding pocket, were selected by comparing the published open state model with an AlphaFold-generated non-conducting model. Mutating these into valine or alanine reduces the potentiation. One explanation may be that removing tyrosine's aromatic ring complicates retaining essential interactions in the binding pocket while swapping tryptophan for smaller residues could make it easier for the drug to stabilise the closed state.
|
4 |
Structural and functional studies of pentameric ligand-gated ion channels from bacteria / Etudes structurales et fonctionnelles de canaux ioniques pentamériques liés à des ligands provenant de bactériesHu, Haidai 15 December 2017 (has links)
Les canaux ioniques pentamériques activables par un ligand (pLGIC) sont l'une des principales familles de canaux transmembranaires. Ils permettent la transduction rapide du signal dans le système nerveux central et périphérique via la liaison de neurotransmetteurs. Les pLGIC sont également présents chez les archées et les bactéries. Seuls deux pLGIC bactériens ont été caractérisés biochimiquement et structurellement jusqu'à présent (GLIC et ELIC). Ils servent de modèle d’étude à de nombreux scientifiques et ont été largement étudiés aussi bien au niveau fonctionnel que structural. Dans la première partie de mon travail de thèse, j'ai purifié, cristallisé et résolu la structure cristalline d'un nouveau pLGIC originaire d'un symbiote de gamma-protéobactérie de Tevnia jerichonana (sTeLIC). Des expériences fonctionnelles montrent que sTeLIC est activé par un pH alcalin, est sélectif pour les ions cationiques monovalents et inhibé par les cations divalents. La structure cristalline résolue à pH 8,0 présente un pore largement ouvert qui est le premier de ce type à être caractérisé dans cette famille pLGIC. De plus, nous avons identifié un modulateur fortement positif qui se lie au "site vestibulaire" dans le domaine extracellulaire, et nous avons résolu la structure cristalline de ce complexe. Des expériences fonctionnelles montrent également que sTeLIC partage de nombreuses fonctionnalités avec ELIC. ELIC et sTeLIC constitutent les archétypes d’une nouvelle classe de pLGICs, dont la forme active se caractérise par un pore largement plus ouvert que les autres pLGICs.Dans la deuxième partie de mon travail de thèse, les résidus senseurs de protons dans GLIC ont été cartographiés, afin de déterminer comment la liaison du proton stabilise l'état ouvert de GLIC. Tous les résidus titrables de GLIC ont été cartographiés par mutagenèse dirigée afin de découvrir des capteurs de protons impliqués dans le processus de déclenchement. Nous avons ainsi démontré que la résidu E35 est un résidu clé, dont la forme chargée stabilise l’état de repos, et la forme protonée l'état actif. Nous avons également démontré que la réponse au proton dépend de deux réseaux distincts à l'interface ECD-TMD qui stabilisent l'état ouvert de GLIC. Dans la troisième partie, j'ai cloné, purifié, cristallisé et déterminé les structures cristallines des formes ouvertes et fermées de DeCLIC, un pLGIC de la protéobactérie Desulfofustis. Chaque sous-unité contient un grand domaine additionnel N-terminal constitué de deux sous-domaines (NTD1 et NTD2). Il s’agit de la première structure d’un pLGIC qui contient un domaine supplémentaire extracellulaire non-canonique. / Ligand-gated pentameric ion channels (pLGIC) are one of the major families of transmembrane receptors. They allow rapid signal transduction in the central and peripheral nervous systems via neurotransmitters binding. PLGICs are also present in archaea and bacteria. Only two bacterial pLGICs have been biochemically and structurally characterized so far (GLIC and ELIC). They serve as working models for many scientists and have been extensively studied both at the functional and structural levels. In the first part of my thesis, I purified, crystallized and solved the crystal structure of a new pLGIC from gamma-proteobacterial symbionts of Tevnia jerichonana (sTeLIC). Functional experiments show that sTeLIC is activated by alkaline pH, and is selective for monovalent cationic ions and inhibited by divalent cations. The crystal structure solved at pH 8.0 displays a widely open pore that is the first of this kind to be characterized in the pLGIC family. In addition, we identified a strongly positive modulator that binds to the "vestibule site" in the extracellular domain, and we solved the crystal structure of this complex. Functional experiments show that sTeLIC shares many features with ELIC. ELIC and sTeLIC are the archetypes of a new class of pLGICs, whose active form is characterized by a much more open pore than other pLGICs. In the second part of my thesis, the proton sensor residues in GLIC have been mapped. All titratable GLIC residues were tested by site-directed mutagenesis to discover proton sensors involved in the triggering process. We have demonstrated that the residue E35 is a key residue, whose charged form stabilizes the resting state, and the protonated form the active state. We have also demonstrated that the proton response is dependent on two distinct networks at the ECD-TMD interface, which stabilize the open state of GLIC.In the third part of my thesis, I cloned, purified, crystallized and determined the crystal structures of the open and closed forms of DeCLIC, a pLGIC of Desulfofustis proteobacterium. Each subunit contains a large N-terminal additional domain consisting of two subdomains (NTD1 and NTD2). This is the first structure of a pLGIC which contains a non-canonical additional extracellular domain.
|
5 |
Structural Basis for Functional Modulation of Pentameric Ligand-gated Ion ChannelsGicheru, Yvonne W. 23 May 2019 (has links)
No description available.
|
6 |
Interdoménové a intradoménové interakce u motorové podjednotky EcoR124I: Výpočetní studieSINHA, Dhiraj January 2016 (has links)
EcoR124I is a Type I restrictionmodification (RM) enzyme and as such forms multifunctional pentameric complexes with DNA cleavage and ATP-dependent DNA translocation activities located on the motor subunit HsdR. When non-methylated invading DNA is recognized by the complex, two HsdR endonuclease/motor subunits start to translocate dsDNA without strand separation activity up to thousands base pairs towards the stationary enzyme while consuming ~1 molecule of ATP per base pair advanced. Whenever translocation is stalled the HsdR subunits cleave the dsDNA nonspecifically far from recognition site. The X-ray crystal structure of HsdR of EcoR124I bound to ATP gave a first insight of structural/functional correlation in the HsdR subunit. The four domains within the subunit were found to be in a square planer arrangement. Computational modeling including molecular dynamics in combination with crystallography, point mutations, in vivo and in vitro assays reveals how interactions between these four domains contribute to ATP-dependent DNA translocation, DNA cleavage or inter-domain communication between the translocase and endonuclease activities.
|
7 |
The Structural Characterization of Two Prokaryotic Membrane Proteins: CfrA and ELICCarswell, Casey January 2014 (has links)
This thesis focuses on the structural and functional characterization of two integral membrane proteins; CfrA, an outer membrane TonB-dependent transporter (TBDT) from Campylobacter jejuni, and ELIC, a pentameric ligand-gated ion channel (pLGIC) from Erwinia Chrysanthemi. The spectroscopic characterization of CfrA revealed a fold consistent with the structural and biophysical properties observed for other TBDT. Both a homology model of CfrA and sequence alignments of CfrA with other ferric-enterobactin transporters suggested a unique mode of ligand binding, thus raising the possibility that C. jejuni can be specifically inhibited. To investigate the molecular determinates of binding to CfrA, I set out to crystallize CfrA. Hundreds of crystal trials led to crystals diffracting to 3.6 Å resolution, with a complete data set acquired at 5 Å resolution that led to a structural model of the CfrA β-barrel.
In the second part of this thesis, I reconstituted ELIC into model membranes in order to test the role of intramembrane aromatic interactions in ELIC gating and lipid sensing. ELIC was reconstituted into both asolectin (aso-ELIC) and 1-palmitoyl-2-oleoyl phosphatidylcholine (PC-ELIC), membranes that stabilize the homologous nicotinic acetylcholine receptor (nAChR) in functional coupled versus non-functional uncoupled conformations, respectively. In both membrane environments, ELIC exhibits a mixed α-helical and β-sheet secondary structure, with a thermal denaturation intermediate between those of the nAChR and the close prokaryotic homolog, GLIC, in similar membranes. The data suggest that although ELIC has a decreased propensity to adopt an uncoupled conformation relative to the nAChR, its ability to undergo cysteamine-induced channel gating is sensitive to its lipid environment. The decreased propensity to uncouple may reflect an increased level of aromatics at the interface between the transmembrane α-helices, M1, M3, and M4. To test this hypothesis further, the level or aromatic residues at the M1, M3, and M4 interface in both GLIC and ELIC were varied, and in both cases the levels of intramembrane aromatic interactions correlated with the efficiency of coupling binding to gating. The data provide further evidence for a role of intramembrane aromatics in channel gating and in dictating the propensity of pentameric ligand-gated ion channels to adopt an uncoupled conformation.
|
8 |
The Role of the M4 α-Helix in Lipid Sensing by a Pentameric Ligand-Gated Ion ChannelHénault, Camille 11 August 2021 (has links)
Pentameric ligand-gated ion channels (pLGICs) are membrane-embedded receptors found extensively in pre- and post-synaptic membranes throughout the nervous system where they play an important role in neurotransmission. The function of the prototypic pLGIC, the nicotinic acetylcholine receptor (nAChR) is highly sensitive to changes in its lipid environment, while other pLGICs display varying lipid sensitivities. This thesis presents a multidisciplinary investigation into the features of the transmembrane domain (TMD) that determine the unique functional and physical traits of different pLGICs. Using two prokaryotic homologues of the nAChR, ELIC and GLIC, as models, I focus on the outermost, lipid-exposed α-helix, M4, which, despite being distant from the primary allosteric pathway coupling agonist binding to channel gating, exercises significant control over channel function. Here, I present evidence that M4 acts as a lipid sensor, detecting changes in the surrounding lipids and transmitting these changes to the channel pore via contacts with the adjacent TMD α-helices, M1 and M3, and/or with structures in the extracellular domain. Using ELIC and GLIC chimeras, I first show that the TMD is the main driver of pLGIC thermal stability. I then demonstrate that the M4 α-helices in each channel play different roles in channel maturation and function, which suggests a divergent evolutionary path. Following this, I show that the M4 C-terminus is essential to both maturation and function in GLIC, while in ELIC its role is less defined, again showcasing possible evolutionary differences. Building on these findings, I examined the role of aromatic residues at the M4 – M1/M3 interface, and found that they predictably determine the interactions between M4 and M1/M3. Notably, the addition of aromatic residues to enhance M4-M1/M3 interactions in ELIC promotes channel function, while the elimination of aromatic residues at the M4-M1/M3 interface in GLIC is detrimental to channel function. Furthermore, I show that these same aromatics alter the strength of pLGIC lipid sensing and the sensitivity to certain disease-causing mutations, both indicating that aromatic residues are key players in channel function, stability and modulation. Finally, I and my collaborators identified and characterized a novel desensitization-linked lipid binding site in ELIC. Extensive mutagenesis studies coupled with biophysical measurements allowed us to develop a model describing how lipid binding influences the rates of ELIC desensitization to shape the agonist-induced response.
|
9 |
Pinces moléculaires photo-isomérisables pour l’étude des changements allostériques des récepteurs pentamériques canaux / Molecular photoswitches for studying of allosteric transitions of pentameric ligand-gated ion channelsNguyen, Thi Hong Long 27 November 2017 (has links)
Résumé : Au cours de ce travail, nous avons effectué une étude méthodologique concernant la synthèse d'azobenzènes tétrasubstitués en position ortho pour mieux comprendre les éléments affectant leurs synthèses, généralement inefficaces, et afin d'en améliorer les rendements. Nous avons conclu que l'inefficacité de cette synthèse est causée par des effets stéréoélectroniques : l’effet stérique du substituant en position ortho, qui s’ajoute à l’effet électronique du groupement en position para. Après différentes optimisations, nous avons réussi à synthétiser un azobenzène tétrachloré et un azobenzène tétrafluoré via un intermédiaire nitrosobenzène avec de bons rendements.Le dérivé tétrafluoro azobenzène a été ensuite fonctionnalisé en introduisant une chaîne alcyne terminée par un groupement maléimide afin de permettre sa fixation sur un résidu cystéine. Les propriétés physicochimiques très intéressantes (lumière verte d'irradiation,T1/2 = 72 jours, photostable) de cette pince ont été évaluées.Parallèlement, une synthèse efficace et pratique pour générer directement la fonction hydroxyle en ortho de l'azobenzène dans des conditions douces a été développée. Nous avons synthétisé plusieurs séries en faisant varier les substituants enpositions para ou/et en ortho afin d'étudier l'influence de ces subsituants sur la régiosélectivité de cette ortho-hydroxylation. L'équation de Jaffé et ses extensions ont donné une relation linéaire avec d'excellents coefficients de détermination R2.Enfin, les azophenols ont été évalués comme des détecteurs colorimétriques d'anions. Leurs caractéristiques ainsi que le mécanisme d'interaction ont été déterminés par une inspection visuelle, des mesures UV-Visible et des expériences de RMN. / Abstract : A methodological study on the synthesis of tetrasubstituted azobenzenes has been realized. We concluded that synthesis of multisubstitued azobenzene is hardly affected by the steric hindrance in ortho position and the electronic effect of para substituents.A tetrachloro and a tetrafluoro azobenzene have been synthesized in good yields, via nitrosobenzene intermediate. The tetrafluoro derivative was then functionalized with an alkyne chain containing a maleimide group for bioconjugation to cysteine residue. Its interesting photoisomerisation properties (green light of irradiation,1/2 = 72 days, photostable) were evaluated.We also developed a practical and effective method for direct ortho-hydroxylation of azobenzenes under mild conditions. The reaction showed a very good functional groups tolerance, leading to a wide range of original azophenols in satisfying to high yields.Through Hammett-Jaffé analyses, we presented a study that correlated electronic and steric perturbations induced by substituents nature to the regioselectivity of this direct hydroxylation process.Azophenols were finally evaluated as anion sensors. Anion sensing characteristics as well as interaction mechnism were determined using visual inspection, UV-Vis and NMR spectrocopy.
|
10 |
Extraction of gating mechanisms from Markov state models of a pentameric ligand-gated ion channelKaralis, Dimitrios January 2021 (has links)
GLIC är en pH-känslig pentamerisk ligandstyrd jonkanal (pLGIC) som finns i cellmembranet hos prokaryoten Gloeobacter violaceus. GLIC är en bakteriell homolog till flera receptorer som är viktiga i nervsystemet hos de flesta eukaryotiska organismer. Dessa receptorer fungerar som mallar för utvecklingen av målstyrda bedövnings- och stimulerande läkemedel som påverkar nervsystemet. Förståelsen av ett proteins mekanismer har därför hög prioritet inför läkemedelsutvecklingen. Eukaryota pLGICs är dock mycket komplexa eftersom några av de är heteromera, har flera domäner, och de pågår eftertranslationella ändringar. GLIC, å andra sidan, har en enklare struktur och det räcker att analysera strukturen av en subenhet - eftersom alla subenheter är helt lika. Flertalet möjliga grindmekanismer föreslogs av vetenskapen men riktiga öppningsmekanismen av GLIC är fortfarande oklar. Projektets mål är att genomföra maskininlärning (ML) för att upptäcka nya grindmekanismer med hjälp av datormetoder. Urspungsdatan togs från tidigare forskning där andra ML-redskap såsom molekyldynamik (MD), elastisk nätverksstyrd Brownsk dynamik (eBDIMS) och Markovstillståndsmodeller (MSM) användes. Utifrån dessa redskap simulerades proteinet som vildtyp samt med funktionsförstärkt mutation vid två olika pH värden. Fem makrotillstånd byggdes: två öppna, två stängda och ett mellanliggande. I projektet användes ett annat ML redskap: KL-divergens. Detta redskap användes för att hitta skillnader i avståndfördelning mellan öppet och stängt makrotillstånd. Utifrån ursprungsdatan byggdes en tensor som lagrade alla parvisa aminosyrornas avstånd. Varje aminosyrapar hade sin egen metadata som i sin tur användes för att frambringa alla fem avståndsfördelningar fråm MSMs som byggdes i förväg. Sedan bräknades medel-KL-divergens mellan två avståndfördelningar av intresse för att filtrera bort aminosyropar med överlappande avståndsfördelningar. För att se till att aminosyror inom aminosyrapar som låg kvar kan påverka varandra, filtrerades bort alla par vars minsta och medelavstånd var stora. De kvarvarande aminosyroparen utvärderades i förhållande till alla fem makrotillstånd Viktiga nya grindmekanismer som hittades genom både KL-divergens och makrotillståndsfördelningar innefattade loopen mellan M2-M3 helixarna av en subenhet och både loopen mellan sträckor β8 och β9 (Loop F)/N-terminal β9-sträckan och pre-M1/N-terminal M1 av närliggande subenheten. Loopen mellan sträckor β8 och β9 (Loop F) visade höga KL-värden också med loopen mellan sträckor β1 och β2 loop samt med loopen mellan sträckor β6 och β7 (Pro-loop) och avståndet mellan aminosyror minskade vid kanalens grind. Övriga intressanta grindmekanismer innefattade parning av aminosyror från loopen β4-β5 (Loop A) med aminosyror från sträckor β1 och β6 samt böjning av kanalen porangränsande helix. KL-divergens påvisades vara ett viktigt redskap för att filtrera tillgänglig data och de nya grindmekanismer kan bli användbara både för akademin, som vill reda ut GLIC:s fullständiga grindmekanismer, och läkemedelsföretag, som letar efter bindningsställen inom molekylen för att utveckla nya läkemedel. / GLIC is a transmembrane proton-gated pentameric ligand-gated ion channel (pLGIC) that is found in the prokaryote Gloeobacter violaceus. GLIC is the prokaryotic homolog to several receptors that are found in the nervous system of many eukaryotic organisms. These receptors are targets for the development of pharmaceutical drugs that interfere with the gating of these channels - such drugs involve anesthetics and stimulants. Understanding the mechanism of a drug’s target is a high priority for the development of a novel medicine. However, eukaryotic pLGICs are complex to analyse, because some of them are heteromeric, have more domains, and because of their post-translational modifications (PTMs). GLIC, on the other hand, has a simpler structure and it is enough to study the structure of only one subunit - since all subunits are identical. Several possible gating mechanisms have been proposed by the scientific community, but the complete gating of GLIC remains unclear. The goal of this project is to implement machine learning (ML) to discover novel gating mechanisms by computational approaches. The starting data was extracted from a previous research where computational tools like unbiased molecular dynamics (MD), elastic network-driven Brownian Dynamics (eBDIMS), and Markov state models (MSMs) were used. From those tools, the protein was simulated in wild-type and in a gain-of-function mutation at two different pH values. Five macrostates were constructed: two open, two closed, and an intermediate. In this project another ML tool was used: KL divergence. This tool was used to score the difference between the distance distributions of one open and one closed macrostate. The starting data was used to create a tensor that stored all residue-residue distances. Each residue pair had its own metadata, which in turn was used to yield the distance distributions of all five pre-build MSMs. Then the average KL scores between two states of interest were calculated and were used to filter out the residue pairs with overlapping distance distributions. To make sure that the residues within a pair can interact with each other, all residue pairs with very high minimum and average distance were filtered out as well. The residue pairs that remained were later evaluated across all five macrostates for further studies. Important novel mechanisms discovered in this project through both the KL divergence and the macrostate distributions involved the M2-M3 loop of one subunit and both the β8-β9 loop/N-terminal β9 strand and the preM1/N-terminal M1 region of the neighboring subunit. The β8-β9 loop (Loop F) showed high KL scores with the β1-β2 and β6-β7 (Pro-loop) loops as well with decreasing distances upon the channel’s opening. Other notable gating mechanisms involved are the pairing of residues from the β1-β2 loop (Loop A) with residues from the strands β1 and β6, as well as the kink of the pore-lining helix. KL divergence proved a valuable tool to filter available data and the novel mechanisms can prove useful both to the academic community that seeks to unravel the complete gating mechanism of GLIC and to the pharmaceutical companies that search for new binding sites within the molecule for new drugs.
|
Page generated in 0.0734 seconds