• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 2
  • 1
  • Tagged with
  • 14
  • 14
  • 14
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Stochastic Motion Stimuli Influence Perceptual Choices in Human Participants

Fard, Pouyan R., Bitzer, Sebastian, Pannasch, Sebastian, Kiebel, Stefan J. 22 March 2024 (has links)
In the study of perceptual decision making, it has been widely assumed that random fluctuations of motion stimuli are irrelevant for a participant’s choice. Recently, evidence was presented that these random fluctuations have a measurable effect on the relationship between neuronal and behavioral variability, the so-called choice probability. Here, we test, in a behavioral experiment, whether stochastic motion stimuli influence the choices of human participants. Our results show that for specific stochastic motion stimuli, participants indeed make biased choices, where the bias is consistent over participants. Using a computational model, we show that this consistent choice bias is caused by subtle motion information contained in the motion noise. We discuss the implications of this finding for future studies of perceptual decision making. Specifically, we suggest that future experiments should be complemented with a stimulus-informed modeling approach to control for the effects of apparent decision evidence in random stimuli.
12

On the neuronal systems underlying perceptual decision-making and confidence in humans

Hebart, Martin 13 March 2014 (has links)
Die Fähigkeit, Zustände in der Außenwelt zu beurteilen und zu kategorisieren, wird unter dem Oberbegriff „perzeptuelles Entscheiden“ zusammengefasst. In der vorliegenden Arbeit wurde funktionelle Magnetresonanztomografie mit multivariater Musteranalyse verbunden, um offene Fragen zur perzeptuellen Entscheidungsfindung zu beantworten. In der ersten Studie (Hebart et al., 2012) wurde gezeigt, dass der visuelle und parietale Kortex eine Repräsentation abstrakter perzeptueller Entscheidungen aufweisen. Im frühen visuellen Kortex steigt die Menge entscheidungsspezifischer Information mit der Menge an verfügbarer visueller Bewegungsinformation, doch der linke posteriore parietale Kortex zeigt einen negativen Zusammenhang. Diese Ergebnisse zeigen, wo im Gehirn abstrakte Entscheidungen repräsentiert werden und deuten darauf hin, dass die gefundenen Hirnregionen unterschiedlich in den Entscheidungsprozess involviert sind, je nach Menge an verfügbarer sensorischer Information. In der zweiten Studie (Hebart et al., submitted) wurde gezeigt, dass sich eine Repräsentation der Entscheidungsvariable (EV) im fronto-parietalen Assoziationskortex finden lässt. Ferner weist die EV im rechten ventrolateralen präfrontalen Kortex (vlPFC) einen spezifischen Zusammenhang mit konfidenzbezogenen Hirnsignalen im ventralen Striatum auf. Die Ergebnisse deuten darauf hin, dass Konfidenz aus der EV im vlPFC berechnet wird. In der dritten Studie (Christophel et al., 2012) wurde gezeigt, dass der Kurzzeitgedächtnisinhalt im visuellen und posterioren parietalen Kortex, nicht jedoch im präfrontalen Kortex repräsentiert wird. Diese Ergebnisse lassen vermuten, dass der Gedächtnisinhalt in denselben Regionen enkodiert wird, die auch perzeptuelle Entscheidungen repräsentieren können. Zusammenfassend geben die hier errungenen Erkenntnisse Aufschluss über den neuronalen Code des perzeptuellen Entscheidens von Menschen und stellen ein vollständigeres Verständnis der zugrundeliegenden Prozesse in Aussicht. / Perceptual decision-making refers to the ability to arrive at categorical judgments about states of the outside world. Here we use functional magnetic resonance imaging and multivariate pattern analysis to identify decision-related brain regions and address a number of open issues in the field of perceptual decision-making. In the first study (Hebart et al., 2012), we demonstrated that perceptual decisions about motion direction are represented in both visual and parietal cortex, even when decoupled from motor plans. While in early visual cortex the amount of information about perceptual choices follows the amount of sensory evidence presented on the screen, the reverse pattern is observed in left posterior parietal cortex. These results reveal the brain regions involved when choices are encoded in an abstract format and suggest that these two brain regions are recruited differently depending on the amount of sensory evidence available. In the second study (Hebart et al., submitted), we show that the perceptual decision variable (DV) is represented throughout fronto-parietal association cortices. The DV in right ventrolateral prefrontal cortex covaries specifically with brain signals in the ventral striatum representing confidence, demonstrating a close link between the two variables. This suggests that confidence is calculated from the perceptual DV encoded in ventrolateral prefrontal cortex. In the third study (Christophel et al., 2012), using a visual short-term memory (VSTM) task, we demonstrate that the content of VSTM is represented in visual cortex and posterior parietal cortex, but not prefrontal cortex. These results constrain theories of VSTM and suggest that the memorized content is stored in regions shown to represent perceptual decisions. Together, these results shed light on the neuronal code underlying perceptual decision-making in humans and offer the prospect for a more complete understanding of these processes.
13

A Bayesian Reformulation of the Extended Drift-Diffusion Model in Perceptual Decision Making

Fard, Pouyan R., Park, Hame, Warkentin, Andrej, Kiebel, Stefan J., Bitzer, Sebastian 10 November 2017 (has links) (PDF)
Perceptual decision making can be described as a process of accumulating evidence to a bound which has been formalized within drift-diffusion models (DDMs). Recently, an equivalent Bayesian model has been proposed. In contrast to standard DDMs, this Bayesian model directly links information in the stimulus to the decision process. Here, we extend this Bayesian model further and allow inter-trial variability of two parameters following the extended version of the DDM. We derive parameter distributions for the Bayesian model and show that they lead to predictions that are qualitatively equivalent to those made by the extended drift-diffusion model (eDDM). Further, we demonstrate the usefulness of the extended Bayesian model (eBM) for the analysis of concrete behavioral data. Specifically, using Bayesian model selection, we find evidence that including additional inter-trial parameter variability provides for a better model, when the model is constrained by trial-wise stimulus features. This result is remarkable because it was derived using just 200 trials per condition, which is typically thought to be insufficient for identifying variability parameters in DDMs. In sum, we present a Bayesian analysis, which provides for a novel and promising analysis of perceptual decision making experiments.
14

A Bayesian Reformulation of the Extended Drift-Diffusion Model in Perceptual Decision Making

Fard, Pouyan R., Park, Hame, Warkentin, Andrej, Kiebel, Stefan J., Bitzer, Sebastian 10 November 2017 (has links)
Perceptual decision making can be described as a process of accumulating evidence to a bound which has been formalized within drift-diffusion models (DDMs). Recently, an equivalent Bayesian model has been proposed. In contrast to standard DDMs, this Bayesian model directly links information in the stimulus to the decision process. Here, we extend this Bayesian model further and allow inter-trial variability of two parameters following the extended version of the DDM. We derive parameter distributions for the Bayesian model and show that they lead to predictions that are qualitatively equivalent to those made by the extended drift-diffusion model (eDDM). Further, we demonstrate the usefulness of the extended Bayesian model (eBM) for the analysis of concrete behavioral data. Specifically, using Bayesian model selection, we find evidence that including additional inter-trial parameter variability provides for a better model, when the model is constrained by trial-wise stimulus features. This result is remarkable because it was derived using just 200 trials per condition, which is typically thought to be insufficient for identifying variability parameters in DDMs. In sum, we present a Bayesian analysis, which provides for a novel and promising analysis of perceptual decision making experiments.

Page generated in 0.0816 seconds