Spelling suggestions: "subject:"percolation dirigées"" "subject:"percolations dirigées""
1 |
Grandes déviations pour des modèles de percolation dirigée et des matrices aléatoires.Ibrahim, Jean-Paul 30 November 2010 (has links) (PDF)
Durant cette thèse, on a étudié essentiellement deux modèles aléatoires qui, malgré leur différence apparente, cachent un intérêt commun et mettent en évidence des phénomènes mathématiques et physiques communs. Le modèle de percolation de dernier passage dans le plan (last-passage directed percolation model ou LPP) est un modèle de percolation orientée bidimensionnel. Il fait partie d'une vaste liste de modèles de croissance et sert à modéliser des phénomènes dans des domaines variés. Dans la première partie de cette thèse, on s'est intéressé essentiellement aux propriétés de grandes déviations de ce modèle. On a également examiné les fluctuations transversales du même modèle. Toute cette étude a été faite dans le cadre d'un rectangle fin. Parallèlement aux travaux sur les modèles de croissance, on a étudié un autre sujet qui émerge également du monde de la Physique : celui des matrices aléatoires. Ces matrices se divisent en deux catégories principales introduites à une vingtaine d'années d'intervalle : les matrices de covariance empirique et les matrices de Wigner. L'étendue du champ d'application de ces matrices est tellement vaste qu'on peut les rencontrer presque dans toutes les filières scientifiques : probabilité, combinatoire, physique atomique, statistique multivariée, télécommunication théorie des représentations, etc. Parmi les objets mathématiques les plus étudiés, on cite la loi jointe des valeurs propres, la densité spectrale, l'espacement des valeurs propres, la plus grande valeur propre et les vecteurs propres associés. En mécanique quantique par exemple, les valeurs propres d'une matrice du GUE modélisent les niveaux d'énergie d'un électron autour du noyau tandis que le vecteur propre associé à la plus grande valeur propre d'une matrice de covariance empirique indique la direction ou l'axe principal en analyse de données. Comme pour le modèle de percolation dirigée, on s'est intéressé en particulier aux propriétés de grandes déviations de la valeur propre maximale d'un certain type de matrices de covariance empirique. Cette étude pourrait avoir des applications en statistique et notamment en analyse en composantes principales. Malgré l'apparente différence, la théorie des matrices aléatoires est strictement liée au modèle de percolation dirigée. Leurs structures de corrélation se ressemblent dans certains cas d'une manière troublante. La convergence des fluctuations, dans les deux cas, vers la célèbre loi de Tracy-Widom en est un bon exemple.
|
2 |
Viscoelastic Interfaces Driven in Disordered Media and Applications to Friction / Interfaces viscoélastiques sous forçage en milieu aléatoire et applications à la frictionLandes, François 10 September 2014 (has links)
De nombreux systèmes complexes soumis à un ajout continu d'énergie réagissent à cet ajout par une accumulation de tension au cours du temps, interrompue par de soudaines libérations d'énergie appelées avalanches. Récemment, il a été remarqué que plusieurs propriétés élémentaires de la dynamique d'avalanche sont issues de processus de relaxation ayant lieu à une échelle microscopique, processus qui sont négligés dans la plupart des modèles. Lors de ma thèse, j'ai étudié deux modèles classiques d'avalanches, modifiés par l'ajout d'une forme de relaxation la plus simple possible. Le premier système est une interface viscoélastique tirée à travers un milieu désordonné. En champ moyen, nous prouvons que l'interface a un comportement périodique caractérisé par une nouvelle échelle temporelle (émergente), avec des avalanches qui touchent l'ensemble du système. Le calcul semi-analytique de la force de friction agissant sur la surface donne des résultats compatibles avec les expériences de friction classique. En dimension finie (2D), les événements touchant l'ensemble du système (trouvés en champ moyen) deviennent localisés, et les simulations numériques donnent des résultats en bon accord avec plusieurs caractéristiques importantes des tremblements de terre, tant qualitativement que quantitativement. Le second système incluant également une forme très simple de relaxation est un modèle jouet d'avalanche : c'est la percolation dirigée. Dans notre étude d'une variante non-markovienne de la percolation dirigée, nous avons observé que la classe d'universalité était modifiée mais seulement partiellement. En particulier, un exposant change de valeur tandis que plusieurs relations d'échelle sont préservées. Cette idée d'une classe d'universalité étendue, obtenue par l'ajout d'une perturbation non-markovienne offre des perspectives prometteuses pour notre premier système. / Many complex systems respond to a continuous input of energy by an accumulation of stress over time, interrupted by sudden energy releases called avalanches. Recently, it has been pointed out that several basic features of avalanche dynamics are induced at the microscopic level by relaxation processes, which are neglected by most models. During my thesis, I studied two well-known models of avalanche dynamics, modified minimally by the inclusion of some forms of relaxation. The first system is that of a viscoelastic interface driven in a disordered medium. In mean-field, we prove that the interface has a periodic behaviour (with a new, emerging time scale), with avalanche events that span the whole system. We compute semi-analytically the friction force acting on this surface, and find that it is compatible with classical friction experiments. In finite dimensions (2D), the mean-field system-sized events become local, and numerical simulations give qualitative and quantitative results in good agreement with several important features of real earthquakes. The second system including a minimal form of relaxation consists in a toy model of avalanches: the Directed Percolation process. In our study of a non-Markovian variant of Directed Percolation, we observed that the universality class was modified but not completely. In particular, in the non-Markov case an exponent changes of value while several scaling relations still hold. This picture of an extended universality class obtained by the addition of a non-Markovian perturbation to the dynamics provides promising prospects for our first system.
|
3 |
Processus de réaction-diffusion : une approche par le groupe de renormalisation non perturbatifCanet, Léonie 17 September 2004 (has links) (PDF)
Cette thèse propose une approche, par les méthodes du groupe de renormalisation non perturbatif, des phénomènes critiques dans les systèmes hors de l'équilibre. Ce travail se scinde en deux parties. La première présente une analyse méthodologique des propriétés de convergence et de précision des approximations les plus couramment utilisées dans ce formalisme : le développement en dérivées et le développement en champ. La seconde partie est consacrée à l'exploration des processus de réaction-diffusion. D'une part, est apportée la première détermination analytique en toute dimension des exposants critiques (universels) caractérisant la classe d'universalité de la percolation dirigée. D'autre part, le diagramme de phase complet des marches aléatoires avec branchement et annihilation impaires est établi et confirmé par des simulations numériques. Cette analyse révèle des effets non perturbatifs qui modifient qualitativement les propriétés (non universelles) communément admises de ce diagramme --- issues des théories de perturbation.
|
4 |
Robustesse et émergence dans les systèmes complexes : le modèle des automates cellulairesRouquier, Jean-Baptiste 08 December 2008 (has links) (PDF)
L'objet de ce travail est de mieux comprendre ce qui se produit lorsque l'on perturbe un système complexe, en utilisant les automates cellulaires comme modèle. Nous nous intéressons principalement à deux perturbations. La première concerne l'écoulement du temps : contrairement au modèle habituel, nous utilisons des mises à jour asynchrones, c'est-à-dire que, à chaque étape, seulement une partie des cellules sont mises à jour. L'autre perturbation concerne la topologie, c'est-à-dire le graphe d'interaction entre les cellules.<br>Une première partie étudie expérimentalement l'apparition de la percolation dirigée dans les automates cellulaires, notamment dans le cadre du "damage spreading". Le dernier chapitre de cette partie prouve une équivalence entre une classe d'automates cellulaires probabilistes et les automates cellulaires asynchrones.<br>La seconde partie étudie dans un premier chapitre l'interaction des deux perturbations évoquées: asynchronisme et topologie. Alors que le modèle habituel utilise une grille Zd, nous étudions une grille où certains liens sont temporairement coupés. Puis un second chapitre démontre des propriétés théoriques sur la règles minorité lorsque la topologie est un arbre.<br>Nous avons dans cette thèse mené à la fois des études expérimentales et des études théoriques. Une préoccupation transversale est la simulation formelle entre modèles. L'enjeu de ces travaux est, à terme, de savoir comment obtenir des systèmes ayant un comportement global prédéfini, ou bien comment rendre robuste à certaines perturbations un système complexe donné.
|
Page generated in 0.0937 seconds