• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • Tagged with
  • 8
  • 8
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Rock mass characterization: air-driven rotary percussive drilling process monitoring based approach

Chen, Jian, 陳健 January 2008 (has links)
published_or_final_version / Civil Engineering / Doctoral / Doctor of Philosophy
2

Rock mass characterization air-driven rotary percussive drilling process monitoring based approach /

Chen, Jian, January 2008 (has links)
Thesis (Ph. D.)--University of Hong Kong, 2009. / Includes bibliographical references (p. 321-330) Also available in print.
3

Development and applications of a drilling process monitoring system for pneumatic drills

菅原純, Sugawara, Jun. January 2002 (has links)
published_or_final_version / abstract / Civil Engineering / Doctoral / Doctor of Philosophy
4

Development and applications of a drilling process monitoring system for pneumatic drills /

Sugawara, Jun. January 2002 (has links)
Thesis (Ph. D.)--University of Hong Kong, 2002. / Includes bibliographical references (leaves 117-120).
5

DRILLING INDUCED DAMAGE TO BOREHOLE WALLROCK: A THEORETICAL, LABORATORY AND FIELD COMPARISON OF THE EFFECTS OF DIAMOND AND PERCUSSION DRILLING

Mathis, Stephen Philip January 1982 (has links)
No description available.
6

Dynamic methods of stiffness identification in impacting systems for rotary-percussive drilling applications

Maolin, Liao January 2016 (has links)
Stiffness identification of an impacted constraint is the main issue discussed in this thesis. Primarily, a change of stability (bifurcation) is used to determine the dynamical stiffness of an impacted beam for a piecewise-linear impact oscillator. Detailed one- and two-parameter bifurcation analyses of this impacting system are carried out by means of experiments and numerical methods. Particularly, the two-parameter numerical continuation of the obtained codimension-one bifurcation (period-doubling bifurcation, or fold bifurcation) indicates a strong monotonic correlation between the stiffness of the impacted beam and the frequency at which this bifurcation appears. In addition to the bifurcation techniques, another method for stiffness identification is analysis of impact duration. To accurately detect impact durations from numerical or experimental signals, nonlinear time series methods are utilised. Two impacting systems, including the piecewise-linear impact oscillator and a drillbit-rock vibro-impact system, are studied to demonstrate this proposed method. For either system, the impact duration is relatively constant when the response of oscillator is a period-one one-impact motion, and it is approximated as a half of the natural period of the oscillator-constraint system. When the mass of oscillator is constant, for an impacted constraint with a certain stiffness, the higher the stiffness, the lower the impact duration. This monotonic correlation provides another mechanism to estimate the stiffness of the impacted constraint. Based on the developed two dynamical methods for stiffness identification, a control algorithm for parameter adjustment of the axial vibration for rotary-percussive drilling applications is designed. This control algorithm aims to maintain the optimal drilling state under the varying formations. By this way, the efficiency of rotary-percussive drilling is expected to be promoted.
7

Mathematical modelling of multiple pulsed laser percussion drilling

Suchatawat, Maturose January 2011 (has links)
In laser percussion drilling, a series of laser pulses with specified energies and durations irradiate the workpiece surface to gradually heat, melt, and vaporise material until a hole with-required depth-and-diameter-is-achieved. Despite being the quickest technique for producing small diameter holes, laser percussion drilling regularly suffers from difficulties in controlling the hole quality such as hole circularity, hole taper and recast layer. Therefore, in order to produce holes to a specific requirement at minimum cost and time, it is crucial to fully understand the effects of each parameter on hole quality. In this research, a new mathematical model for multiple pulsed laser drilling is developed to predict the hole depth, hole taper, and recast layer thickness, and to investigate the effects of key laser parameters on hole dimensions. The new model accounts for recoil pressure, melt ejection, O2 assist gas effects, as well as solidification of the melt. The development of-the new model is divided into two stages; pulse on stage where interaction between laser beam-material takes place, and pulse off stage where solidification of the melt is modelled. Governing equations are established from heat conduction, energy, and mass equations at the solid-liquid and liquid-vapour interfaces with appropriate boundary and initial conditions. Analytical solutions are derived by using Mathematica 7 software as a tool to solve the system of non-linear equations. To validate the model, experimental work has been conducted and the measured results are compared to those calculated from the model. It is shown that the new model gives a good prediction of the hole depth and acceptable prediction of the recast layer thickness. Laser peak power and pulse width are shown to have a significant influence over the drilled hole quality whereas the changes due to pulse frequency are less pronounced.
8

A spatial-temporal conceptualization of groundwater flow distribution in a granite fractured rock aquifer within the southern supersite research catchment of the Kruger National Park

Van Niekerk, Ashton January 2014 (has links)
Masters of Science / Understanding the hydrogeology of fractured or crystalline rocks is complicated because of complex structure and a porosity that is almost exclusively secondary. These types of geologies exhibit strong heterogeneities and irregularities contrasted in hydraulic properties, spacing and flow direction within fractured rock aquifers. Therefore it is important to develop a conceptual model based on site specific data such as the hydraulic roles between groundwater and nearby hillslope/surface water bodies in order to understand its movement within the environment. Therefore this study intends to develop a hydrogeological conceptual model associated with the dominant groundwater flow processes at a 3rd order scale within the Kruger National Park (KNP).

Page generated in 0.1126 seconds