Spelling suggestions: "subject:"perda dde energia"" "subject:"perda dee energia""
1 |
Perdas de energia em galerias escavadas em rocha : algumas questõesTomás, Maria Teresa de Carvalho Dias Lopes Gomes January 1986 (has links)
Prova complementar para doutoramento em Engenharia Civil, na Faculdade de Engenharia da Universidade do Porto
|
2 |
Metal oxides of resistive memories investigated by electron and ion backscatteringMarmitt, Gabriel Guterres January 2017 (has links)
O memristor é um dos dispositivos mais promissores sendo estudados para múltiplos usos em sistemas eletrônicos, com aplicações desde memórias não voláteis a redes neurais artificiais. Seu funcionamento é baseado na formação e ruptura de filamentos condutores nanométricos, o que altera drasticamente a resistência do dispositivo. Estes filamentos são formados pela acumulação de vacâncias de oxigênio, portanto um profundo entendimento da autodifusão de oxigênio nestes sistemas é necessário. Medidas acuradas da difusão em óxidos metálicos foi obtida com o desenvolvimento de uma análise quantitativa do espectro em energia de elétrons retroespalhados. A inovadora técnica de RBS de elétrons (ERBS) utiliza elétrons de alta energia ( 40 keV) para investigar a região próxima a superfície (10–100 nm). Medidas da região de alta perda de energia – chamada de Spectroscopia de Perda de Alta-Energia de Elétrons Refletidos (RHEELS) – também exibe características da estrutura eletrônica dos materiais. Um procedimento cuidadoso para o ajuste de espectros de ERBS foi desenvolvido, e então aplicado na análise de amostras multi camada de Si3N4/TiO2, e medidas de band gap de alguns óxidos, como SiO2, CaCO3 e Li2CO3. Simulações de Monte Carlo foram empregadas no estudo dos efeitos de espalhamento múltiplo nos espectros de ERBS, e uma descrição dielétrica dos espalhamentos inelásticos extendeu as simulação para também considerarem os picos de exitação plasmônica observados em RHEELS. Estas ferramentas de análise foram integradas em um pacote chamado PowerInteraction. Com o uso deste, uma série de medidas de autodifusão de oxigênio em TiO2 foram conduzidas. As amostras eram compostas por dois filmes de TiO2 depositados por sputtering, um dos quais enriquecido com isótopo 18 de oxigênio. Após tratamentos térmicos, perfis de difusão foram obtidos pelo rastreio das concentrações relativas dos isótopos de oxigênio nos dois filmes. Do comportamento logarítmico dos coeficientes de difusão em relação à temperatura, uma energia de ativação de 1.05 eV para a autodifusão de oxigênio em TiO2 foi obtida. Análises por feixes de íons, como RBS e NRA/NRP (Análise/Perfilometria por Reação Nuclear), também forneceram informações complementares. / The memristor is one of the most promising devices being studied for multiple uses in future electronic systems, with applications ranging from nonvolatile memories to artificial neural networks. Its working is based on the forming and rupturing of nano-scaled conductive filaments, which drastically alters the device’s resistance. These filaments are formed by oxygen vacancy accumulation, hence a deep understanding of the self-diffusion of oxygen in these systems is necessary. Accurate measurements of oxygen self-diffusion on metal oxides was achieved with the development of a quantitative analysis of the energy spectrum of the backscattering of electrons. The novel technique called Electron Rutherford Backscattering Spectroscopy (ERBS) uses the scattering of high energy electrons ( 40 keV) to probe the sample’s near surface (10–100 nm). Measurements of the high energy loss region – called Reflection High-Energy Electron Loss Spectroscopy (RHEELS) – also exhibit characteristics of the material’s electronic structure. A careful procedure was developed for the fitting of ERBS spectra, which was then applied on the analysis of multi-layered samples of Si3N4/TiO2, and measurements of the band gap of common oxides, such as SiO2, CaCO3 and Li2CO3. Monte Carlo simulations were employed to study the effects of multiple elastic scatterings in ERBS spectra, and a dielectric function description of inelastic scatterings extended the simulation to also consider the plasmon excitation peaks observed in RHEELS. These analysis tools were integrated into a package named PowerInteraction. With its use, a series of measurements of oxygen self-diffusion in TiO2 were conducted. The samples were composed of two sputtered deposited TiO2 layers, one of which was enriched with the 18 mass oxygen isotope. After thermal annealing, diffusion profiles were obtained by tracking the relative concentration of oxygen isotopes in both films. From the logarithmic temperature dependence of the diffusion coefficients, an activation energy of 1.05 eV for oxygen self-diffusion in TiO2 was obtained. Common ion beam analysis, such as RBS and NRA/NRP (Nuclear Reaction Analysis/Profiling), were also used to provide complementary information.
|
3 |
Perda de energia e potenciais de espalhamento para o freamento de prótons e dímeros / Energy loss and scattering potentials for stopping of protons and dimersSilva, Flávio Matias da January 2018 (has links)
A partir de uma abordagem teórica e experimental, a perda de energia ou a força de freamento de íons individuais e dímeros atravessando um gás de elétrons livres (teoricamente) e um meio sólido (experimentalmente) e investigada cuidadosamente neste trabalho. Do ponto de vista teórico, a descrição da interação de íons com um gás de elétrons e feita em termos do potencial de espalhamento elétron- on. Os resultados mostram diferentes soluções para os potenciais auto-consistentes em baixas energias dos projéteis, as quais são relacionadas a diferentes graus de excitação da nuvem eletrônica em torno do projétil. Uma interpolação dinâmica do potencial de espalhamento V (r) e proposta e usada para calcular a força de freamento. Esses resultados estão em bom acordo com os cálculos de benchmark da TD-DFT, bem como com os dados experimentais. Experimentalmente, focamos nosso estudo na técnica de espalhamento de íon de energia média (MEIS) para a obtenção da perda de energia de íons de H+ e HeH+ em Al2O3. O objetivo dessa investigação e melhorar nosso entendimento do efeito de vizinhança negativo e positivo observado na perda de energia de íons moleculares. Em baixas energias, esse efeito de vizinhança e caracterizado por uma interferência negativa que e responsável pela menor perda de energia dos fragmentos dos íons moleculares quando comparada ao caso onde os fragmentos estão longe um do outro. Em altas energias o efeito se inverte. Motivados por uma descrição mais acurada desses efeitos, um novo modelo não linear foi desenvolvido através da generalização do modelo da abordagem da densidade induzida (IDA) para a interação de íons moleculares com um gás de elétrons livres, nomeadamente como IDA-Mol. Para o potencial de espalhamento dos dímeros e proposta uma correção para a carga de polarização em torno do on Z1 devido a vizinhan ca de um on Z2. A análise dos resultados obtidos a partir da IDA-Mol nos permitiu, pela primeira vez, explicar a origem do efeito de vizinhança negativo (baixas energias) e positivo (altas energias), bem como a transição abrupta observada entre os efeitos negativos e positivos do efeito de vizinhança na perda de energia. / From a theoretical and experimental approach, the energy loss or the stopping force of individual ions and dimers in a free electrons gas (FEG) (theoretically) and in a solid medium (experimentally) is carefully investigated in this work. From the theoretical point of view, the description of the interaction of ions with an electron gas is made in terms of the electron-ion scattering potential. The results show di erent solutions for the self-consistent potentials at low energies of the projectiles, which are related to di erent degrees of excitation of the electronic cloud around the projectile. A dynamic interpolation of the scattering potential V (r) is proposed and used to calculate the stopping force. These results are in good agreement with TD-DFT benchmark calculations, as well as with the experimental data. Experimentally, we focused our study on the medium energy ion scattering (MEIS) technique to obtain the energy loss of H+ ions and HeH+ dimers in Al2O3. The aim of this investigation is to improve our understanding of the negative and positive vicinage e ects observed in the energy loss of dimers. At low energies, this vicinage e ect is characterized by a negative interference that is responsible for the lower energy loss of the dimer fragments when compared to the case where the fragments are far from each other. At high energies the e ect is reversed. Motivated by a more accurate description of these e ects, a new nonlinear model was developed through the generalization of the induced density approach (IDA) model for the interaction of dimers with a free electron gas, namely IDA-Mol. For the scattering potential of the dimers a correction is proposed for the polarization charge around the ion Z1 due to the Z2 companion. The analysis of the results obtained from the IDA-Mol allowed us, for the rst time, to explain the origin of the negative (low energies) and positive (high energies) vicinage e ects, as well as the abrupt transition observed between the negative and positive e ects of the vicinage e ect in the energy loss.
|
4 |
Medida da perda de energia de moléculas da hidrogênio através da técnica MEISShubeita, Samir de Morais January 2006 (has links)
O estudo da interação de íons moleculares com a matéria tem sido alvo de diversos trabalhos, tanto teóricos quanto experimentais, ao longo das últimas décadas. Comparativamente ao que ocorre com íons monoatômicos, os fenômenos envolvendo íons moleculares são mais complexos e não tão bem compreendidos. No estudo da perda de energia, observam-se efeitos moleculares que não ocorrem com íons monoatômicos. Além da força de freamento, a perturbação que cada constituinte da molécula incidente provoca nos elétrons do meio durante seu deslocamento afeta os demais componentes da molécula original, fazendo com que estes experimentem uma força extra. Este fenômeno é conhecido como efeito de interferência ou vizinhança, e sua magnitude é considerável apenas nos instantes iniciais da molécula dentro do alvo, enquanto os constituintes ainda estiverem correlacionados. A influência deste efeito sobre os íons incidentes pode ser verificada através da interação de íons moleculares com camadas muito finas de um determinado alvo. Outro fenômeno observado na interação de íons moleculares com a matéria é a chamada explosão coulombiana, decorrente da força de repulsão que causa o progressivo afastamento entre si dos constituintes da molécula após a perda de seus elétrons nas primeiras camadas do material. Com base nestas considerações, este trabalho se propõe a avaliar a perda de energia eletrônica de feixes de H2+ e H3+ relativamente a feixes monoatômicos (H+), incidentes sobre filmes ultrafinos de SiO2 (10-25 Å), crescidos sobre um substrato de Si cristalino. Para tanto, utilizamos a técnica MEIS (Medium Energy Ion Scattering) que permite a obtenção de espectros de energia/profundidade destas camadas ultrafinas com alta resolução. Com o auxílio de um software desenvolvido para a análise de espectros provenientes de experimentos com a técnica MEIS, determinamos os fatores de perda de energia eletrônica de íons H2+ e H3+ com relação a íons H+, juntamente com uma análise do straggling de energia para estes diferentes íons. Os experimentos foram realizados como função das energias das partículas incidentes, cobrindo uma faixa de energias entre 40 e 150 keV/uma para íons H3+ e entre 40 e 200 keV/uma para íons H2+. Os resultados mostram que a razão entre a perda de energia da molécula e a soma da perda de energia de seus constituintes é cerca de 0.85 para ambos H2+ e H3+ em energias abaixo de 80 keV/uma. Para as energias mais altas (acima de 120 keV/uma), esta razão atinge aproximadamente 1.2 e 1.5 para H2+ e H3+ respectivamente. A região de transição ocorre entre 80 e 100 keV/uma, onde uma abrupta variação das razões das perdas de energia é observada. Uma interpretação desses resultados em termos do formalismo dielétrico mostrou-se adequada somente para energias acima de 100 keV/uma. Para mais baixas energias, efeitos não-lineares estão presentes e o formalismo dielétrico tende a superestimar os resultados experimentais. Além disso, tais cálculos mostraram a importância da inclusão de excitações de plasmon na região acima de 100 keV/uma. / The study of molecular ions interacting with matter has been the subject of an intense theoretical and experimental activity in the last decades. In comparison to what occurs with monoatomic ions, the phenomena involving molecular ions are more complex and not so well understood. Indeed, effects that have been observed in the study of the energy loss of molecules in solids do not occur with monoatomic ions. In addition to the stopping force, there is the perturbation that each constituent of the impinging molecule induces in the electrons of the target, which affects the trailing components of the original molecule, exerting an additional force upon them. This phenomenon is known as interference or vicinage effect, and its magnitude is considerable only during the initial stages of the molecule inside the target while its constituents remain correlated. The influence of this effect over the impinging ions can be verified through the interaction of molecular ions with very thin layers of particular targets. Another phenomena observed in the interaction of molecular ions with matter is the so-called Coulomb explosion, generated by the repulsion force that causes the progressive separation of the molecular constituents inside the target after the loss of their electrons. Based on these considerations, this work aims to evaluate the electronic energy loss of H2+ and H3+ beams in comparison to monoatomic beams (H+), impinging over ultra-thin films of SiO2 (10-25 Å) grown over Si crystalline substrates. To that end, we employ the MEIS (Medium Energy Ion Scattering) technique, which provides energy/depth spectra of these ultra-thin layers with high energy resolution. With the support of a software developed for the analysis of experimental spectra obtained via MEIS technique, we were able to determine the electronic energy loss factors of H2+ and H3+ ions, together with a analysis of the energy straggling for these ions. The experiments were carried out as functions of the incident particle energies, covering a range between 40 and 150 keV/amu for H3+ ions and between 40 and 200 keV/amu for H2+ ions. The results show that the ratio between the molecule energy loss and the sum of the energy loss of its constituents is about 0.85 for both H2+ and H3+ ions at energies below 80 keV/amu. For energies above 120 keV/amu, this ratio reaches approximately 1.2 and 1.5 for H2+ and H3+ respectively. A sudden change in these ratios is observed for both molecules in the energy region between 80 and 100 keV/amu. The ratios obtained at higher energies are well described by calculations carried out in the framework of the dielectric formalism. At lower energies, non-linear effects come into play and such calculations tend to overestimate the experimental results. Finally, a comparison between these calculations and the experimental results at higher energies show the importance of plasmon excitations in this energy regime.
|
5 |
Metal oxides of resistive memories investigated by electron and ion backscatteringMarmitt, Gabriel Guterres January 2017 (has links)
O memristor é um dos dispositivos mais promissores sendo estudados para múltiplos usos em sistemas eletrônicos, com aplicações desde memórias não voláteis a redes neurais artificiais. Seu funcionamento é baseado na formação e ruptura de filamentos condutores nanométricos, o que altera drasticamente a resistência do dispositivo. Estes filamentos são formados pela acumulação de vacâncias de oxigênio, portanto um profundo entendimento da autodifusão de oxigênio nestes sistemas é necessário. Medidas acuradas da difusão em óxidos metálicos foi obtida com o desenvolvimento de uma análise quantitativa do espectro em energia de elétrons retroespalhados. A inovadora técnica de RBS de elétrons (ERBS) utiliza elétrons de alta energia ( 40 keV) para investigar a região próxima a superfície (10–100 nm). Medidas da região de alta perda de energia – chamada de Spectroscopia de Perda de Alta-Energia de Elétrons Refletidos (RHEELS) – também exibe características da estrutura eletrônica dos materiais. Um procedimento cuidadoso para o ajuste de espectros de ERBS foi desenvolvido, e então aplicado na análise de amostras multi camada de Si3N4/TiO2, e medidas de band gap de alguns óxidos, como SiO2, CaCO3 e Li2CO3. Simulações de Monte Carlo foram empregadas no estudo dos efeitos de espalhamento múltiplo nos espectros de ERBS, e uma descrição dielétrica dos espalhamentos inelásticos extendeu as simulação para também considerarem os picos de exitação plasmônica observados em RHEELS. Estas ferramentas de análise foram integradas em um pacote chamado PowerInteraction. Com o uso deste, uma série de medidas de autodifusão de oxigênio em TiO2 foram conduzidas. As amostras eram compostas por dois filmes de TiO2 depositados por sputtering, um dos quais enriquecido com isótopo 18 de oxigênio. Após tratamentos térmicos, perfis de difusão foram obtidos pelo rastreio das concentrações relativas dos isótopos de oxigênio nos dois filmes. Do comportamento logarítmico dos coeficientes de difusão em relação à temperatura, uma energia de ativação de 1.05 eV para a autodifusão de oxigênio em TiO2 foi obtida. Análises por feixes de íons, como RBS e NRA/NRP (Análise/Perfilometria por Reação Nuclear), também forneceram informações complementares. / The memristor is one of the most promising devices being studied for multiple uses in future electronic systems, with applications ranging from nonvolatile memories to artificial neural networks. Its working is based on the forming and rupturing of nano-scaled conductive filaments, which drastically alters the device’s resistance. These filaments are formed by oxygen vacancy accumulation, hence a deep understanding of the self-diffusion of oxygen in these systems is necessary. Accurate measurements of oxygen self-diffusion on metal oxides was achieved with the development of a quantitative analysis of the energy spectrum of the backscattering of electrons. The novel technique called Electron Rutherford Backscattering Spectroscopy (ERBS) uses the scattering of high energy electrons ( 40 keV) to probe the sample’s near surface (10–100 nm). Measurements of the high energy loss region – called Reflection High-Energy Electron Loss Spectroscopy (RHEELS) – also exhibit characteristics of the material’s electronic structure. A careful procedure was developed for the fitting of ERBS spectra, which was then applied on the analysis of multi-layered samples of Si3N4/TiO2, and measurements of the band gap of common oxides, such as SiO2, CaCO3 and Li2CO3. Monte Carlo simulations were employed to study the effects of multiple elastic scatterings in ERBS spectra, and a dielectric function description of inelastic scatterings extended the simulation to also consider the plasmon excitation peaks observed in RHEELS. These analysis tools were integrated into a package named PowerInteraction. With its use, a series of measurements of oxygen self-diffusion in TiO2 were conducted. The samples were composed of two sputtered deposited TiO2 layers, one of which was enriched with the 18 mass oxygen isotope. After thermal annealing, diffusion profiles were obtained by tracking the relative concentration of oxygen isotopes in both films. From the logarithmic temperature dependence of the diffusion coefficients, an activation energy of 1.05 eV for oxygen self-diffusion in TiO2 was obtained. Common ion beam analysis, such as RBS and NRA/NRP (Nuclear Reaction Analysis/Profiling), were also used to provide complementary information.
|
6 |
Perda de energia e fragmentação de íons moleculares em cristaisFadanelli Filho, Raul Carlos January 2005 (has links)
Os fenômenos decorrentes da interação entre íons monoatômicos e a matéria têm sido amplamente estudados há décadas. No entanto, um esforço comparativamente menor tem sido despendido no estudo dos fenômenos decorrentes da interação entre feixes moleculares e a matéria, especialmente quando o alvo do feixe é um sólido cristalino. Tais fenômenos, como a transferência de energia entre o feixe e a matéria, a emissão de raios X induzidos pelos feixes e a geração de produtos de reação nuclear sofrem importantes modificações no caso de feixes moleculares. Essas alterações estão longe de ser explicadas por uma simples soma dos efeitos causados pelos componentes individuais do aglomerado iônico. Em particular, no caso de interação com sólidos cristalinos, a fragmentação dos aglomerados causada pela explosão coulombiana causa importantes efeitos sobre o fluxo de íons ao longo do sólido. Finalmente, efeitos de vizinhança entre os componentes do aglomerado alteram sensivelmente o valor da energia transferida entre este e o sólido. Na descrição desses fenômenos, empregou-se, neste trabalho, de um lado, a construção de um modelo teórico para a perda de energia de aglomerados e, de outro, técnicas experimentais envolvendo contagens de retroespalhamento, indução de raios X pelo feixe de íons e geração de produtos de reação nuclear por feixes de H+, H2 + e H3 + em Si e SIMOX. Como elo entre teoria e experimento, empregaram-se simulações que descrevem a interação entre os íons moleculares e o alvo. Pela primeira vez, alterações de fluxo de íons causadas pela explosão coulombiana foram quantificadas, valores de perda de energia foram obtidos e, finalmente, uma nova expressão simplificada para a transferência de energia foi obtida. / Ion induced phenomena in matter have been studied for many decades. However, a comparatively minor effort was done in the subject of the interaction of molecular ions with the matter, especially for crystalline solid targets. Such phenomena, for instance, the energy transfer between ions and matter, the ion beam induced X ray emission and the nuclear reaction yield undergo important modifications under molecular ion bombardment. These modifications cannot be explained by the sum of effects induced by each ion component of the ionic cluster. Moreover, for the interaction between the cluster beam and crystalline solids, the cluster breakup induced by the Coulomb explosion leads to important effects in the ion flux distribution along the solid. Finally, vicinage effects among the cluster components change the energy transfer between this cluster and the solid. In order to describe those phenomena in this work, we have used, firstly, coupledchannel calculations to describe the cluster energy transfer, and developed a simple energy loss model. Secondly, backscattering, particle induced X ray emission and nuclear reaction analysis experiments have been measured for H+, H2 + and H3 + beams in Si and SIMOX targets. As a link between theory and experiments, we have performed computer simulations to describe the full interaction between the molecular ions and the target atoms. For the first time, cluster ion flux changes induced by the Coulomb explosion were quantified and, finally, a new simple expression for the cluster energy transfer was developed.
|
7 |
Medida da perda de energia de moléculas da hidrogênio através da técnica MEISShubeita, Samir de Morais January 2006 (has links)
O estudo da interação de íons moleculares com a matéria tem sido alvo de diversos trabalhos, tanto teóricos quanto experimentais, ao longo das últimas décadas. Comparativamente ao que ocorre com íons monoatômicos, os fenômenos envolvendo íons moleculares são mais complexos e não tão bem compreendidos. No estudo da perda de energia, observam-se efeitos moleculares que não ocorrem com íons monoatômicos. Além da força de freamento, a perturbação que cada constituinte da molécula incidente provoca nos elétrons do meio durante seu deslocamento afeta os demais componentes da molécula original, fazendo com que estes experimentem uma força extra. Este fenômeno é conhecido como efeito de interferência ou vizinhança, e sua magnitude é considerável apenas nos instantes iniciais da molécula dentro do alvo, enquanto os constituintes ainda estiverem correlacionados. A influência deste efeito sobre os íons incidentes pode ser verificada através da interação de íons moleculares com camadas muito finas de um determinado alvo. Outro fenômeno observado na interação de íons moleculares com a matéria é a chamada explosão coulombiana, decorrente da força de repulsão que causa o progressivo afastamento entre si dos constituintes da molécula após a perda de seus elétrons nas primeiras camadas do material. Com base nestas considerações, este trabalho se propõe a avaliar a perda de energia eletrônica de feixes de H2+ e H3+ relativamente a feixes monoatômicos (H+), incidentes sobre filmes ultrafinos de SiO2 (10-25 Å), crescidos sobre um substrato de Si cristalino. Para tanto, utilizamos a técnica MEIS (Medium Energy Ion Scattering) que permite a obtenção de espectros de energia/profundidade destas camadas ultrafinas com alta resolução. Com o auxílio de um software desenvolvido para a análise de espectros provenientes de experimentos com a técnica MEIS, determinamos os fatores de perda de energia eletrônica de íons H2+ e H3+ com relação a íons H+, juntamente com uma análise do straggling de energia para estes diferentes íons. Os experimentos foram realizados como função das energias das partículas incidentes, cobrindo uma faixa de energias entre 40 e 150 keV/uma para íons H3+ e entre 40 e 200 keV/uma para íons H2+. Os resultados mostram que a razão entre a perda de energia da molécula e a soma da perda de energia de seus constituintes é cerca de 0.85 para ambos H2+ e H3+ em energias abaixo de 80 keV/uma. Para as energias mais altas (acima de 120 keV/uma), esta razão atinge aproximadamente 1.2 e 1.5 para H2+ e H3+ respectivamente. A região de transição ocorre entre 80 e 100 keV/uma, onde uma abrupta variação das razões das perdas de energia é observada. Uma interpretação desses resultados em termos do formalismo dielétrico mostrou-se adequada somente para energias acima de 100 keV/uma. Para mais baixas energias, efeitos não-lineares estão presentes e o formalismo dielétrico tende a superestimar os resultados experimentais. Além disso, tais cálculos mostraram a importância da inclusão de excitações de plasmon na região acima de 100 keV/uma. / The study of molecular ions interacting with matter has been the subject of an intense theoretical and experimental activity in the last decades. In comparison to what occurs with monoatomic ions, the phenomena involving molecular ions are more complex and not so well understood. Indeed, effects that have been observed in the study of the energy loss of molecules in solids do not occur with monoatomic ions. In addition to the stopping force, there is the perturbation that each constituent of the impinging molecule induces in the electrons of the target, which affects the trailing components of the original molecule, exerting an additional force upon them. This phenomenon is known as interference or vicinage effect, and its magnitude is considerable only during the initial stages of the molecule inside the target while its constituents remain correlated. The influence of this effect over the impinging ions can be verified through the interaction of molecular ions with very thin layers of particular targets. Another phenomena observed in the interaction of molecular ions with matter is the so-called Coulomb explosion, generated by the repulsion force that causes the progressive separation of the molecular constituents inside the target after the loss of their electrons. Based on these considerations, this work aims to evaluate the electronic energy loss of H2+ and H3+ beams in comparison to monoatomic beams (H+), impinging over ultra-thin films of SiO2 (10-25 Å) grown over Si crystalline substrates. To that end, we employ the MEIS (Medium Energy Ion Scattering) technique, which provides energy/depth spectra of these ultra-thin layers with high energy resolution. With the support of a software developed for the analysis of experimental spectra obtained via MEIS technique, we were able to determine the electronic energy loss factors of H2+ and H3+ ions, together with a analysis of the energy straggling for these ions. The experiments were carried out as functions of the incident particle energies, covering a range between 40 and 150 keV/amu for H3+ ions and between 40 and 200 keV/amu for H2+ ions. The results show that the ratio between the molecule energy loss and the sum of the energy loss of its constituents is about 0.85 for both H2+ and H3+ ions at energies below 80 keV/amu. For energies above 120 keV/amu, this ratio reaches approximately 1.2 and 1.5 for H2+ and H3+ respectively. A sudden change in these ratios is observed for both molecules in the energy region between 80 and 100 keV/amu. The ratios obtained at higher energies are well described by calculations carried out in the framework of the dielectric formalism. At lower energies, non-linear effects come into play and such calculations tend to overestimate the experimental results. Finally, a comparison between these calculations and the experimental results at higher energies show the importance of plasmon excitations in this energy regime.
|
8 |
Estudo de superficies metálicas utilizando MEIS : a importância da forma de linhaSilva Junior, Agenor Hentz da January 2007 (has links)
Espalhamento de íons com energia média (MEIS), em conjunto com as técnicas de sombreamento e bloqueio, representa um poderoso método para a determinação de parâmetros estruturais e vibracionais de superfícies cristalinas. Esta determinação é realizada pela comparação do rendimento de íons detectados em função do Ângulo de espalhamento, as chamadas curvas de bloqueio, com simulaçõe computacionais. Em geral, um número grande de estruturas-tentativa é utilizada e a melhor concordância entre resultados experimentais e teóricos encontrada é considerada a estrutura real. Apesar do imenso sucesso, este tipo de abordagem na determinação da superfície não é únivoco em determinados sistemas. Além disso, as formas do espectro de perda de energia iônica não são, normalmente, analisadas pois requerem um conhecimento profundo dos mecanismos de transferência de energia. A probabilidade de excitação/ionização para cada camada interna em uma colisão única representa um aspecto importante. Neste trabalho, cálculos por Canais Acoplados são usados para o descrever os mecanismos de transferência de energia em conjunto com a simulação Monte Carlo das trajetórias iônicas no interior do cristal. Este método possibilita a simulação da distribuição de perda de energia do pico de superfície para diversos sistemas físicos. Primeiramente, foi realizado estudo com deposição de Y e a formação do siliceto bidimensional Si(111)(1×1)-Y para diversas preparações da superfície e diferentes ângulos de espalhamento. Os resultados mostraram que existem contribuições para o espectro em energia referentes á rugosidade e não homogeneidade da superfície. Entretanto, para incidência e detecção do feixe de íons quase-normais á superfície da amostra, a concordância entre os espectros em energia simulados e experimentais é satisfatória. Posteriormente, foi realizado um estudo com a deposição de fração de monocamada de metais alcalinos (K, Rb e Cs) sobre Al(111). A perda de energia, neste caso, pode ser completamente atribuída a colisões atômicas únicas nos metais alcalinos. Os espectros de energia experimentais referentes a Rb e Cs apresentam notável assimetria em relação ao K, fenômeno este atribuído ás excitaçõesde elétrons 3d e 4d, respectivamente, e a múltiplas ionizações destes estados. Houve excelente concordância entre teoria e experimento referente aos espalhamentos por Rb e Cs. Com relação ao K, ocorreu discrepÂncia na região de baixa energia do espectro, resultante de problemas com a preparação da amostra. Finalmente, tanto o espectro em energia quanto as curvas de bloqueio referentes á medidas na superfície limpa de Cu(111) foram simulados e comparados com resultados experimentais. A determinação da superfície através do método “clássico” mostrou que alguns conjuntos de parâmetros estruturais e vibracionais podem resultar em curvas de bloqueio idênticas. Por outro lado, a simulação dos espectros em energia, não apresentou estes problemas, o que sugere fortemente a necessidade de um modelo com correlação (ƒcorr = 0,4). Este resultado mostra que a simulação do espectro em energia pode ser utilizado em conjunto com a simulação das curvas de bloqueio de forma a servir de ferramenta auxiliar na determinação de parâmetros estruturais e vibracionais de superfícies. / Medium-energy ion scattering (MEIS) in connection with shadowing and blocking techniques is a powerful method for the determination of structural and vibrational parameters of crystalline surfaces. This determination has been done by comparing the yield of detected ions as function of scattering angle, the so-called blocking curves, between experimental data with computational simulations. In general, a large set of guess-structures has to be simulated, and the best fit is regarded as the real structure. Besides its enourmous success, this kind of approach for surface determination may give rise to non-unique structures for some physical systems. Moreover, the shape of ion energy-loss spectrum is usually not fully analyzed, because this requires an improved knowledge on the energy-transfer mechanisms. The differential excitation/ ionization probability for each subshell in a single collision is the important quantity. In the present work, Coupled Channels calculations are used to describe energy-transfer mechanisms in connection with Monte Carlo simulations for the ionic trajectories inside the crystal. This method describes reliable energy-loss distribution for the surface peak of several physical systems. Firstly, the study of Y overlayers and Si(111)(1×1) two-dimensional silicide phase formed by Y on this surface, in various scattering geometries and with different surface preparations was performed. The experimental results indicate that additional broadening contributions arise from surface inhomogeneity and roughness, but for near-normal incident and outgoing trajectories the theory and experiment agree satisfactory. Subsequently, the study of alkali-metals (K, Rb and Cs) adsorbed onto Al(111) surface was done. The energy losses can be attributed entirely to single atomic collisions from the alkali atoms, and the experiments reproduce the markedly increased asymmetry in scattering from Rb and Cs relative to K, attributable largely to the role of 3d and 4d excitations, respectively, and particularly the role of multiple excitations of these states. For Rb and Cs scattering, the data show excellent quantitative agreement between theory and experiment. In the case of K scattering, a discrepancy of a low-energy shoulder is attributed to a problem associated with the sample preparation. At last, both energy loss spectrum and blocking curves related to clean Cu(111) measurements were simulated and compared to experimental results. The surface determination through the “classical” method showed that a set of different structural and vibrational parameters can result in nearly identical simulated blocking curves. On the other hand, the energy loss spectrum simulation, which did not present this behaviour, strongly suggests the adoption of a correlated surface model (ƒcorr = 0,4). This result shows that the energy loss spectra simulation can be used in connection with the blocking curve simulation as an important tool in performing structural and vibrational surface determination.
|
9 |
Caracterização de nanoestruturas através da técnica MEISSortica, Maurício de Albuquerque January 2009 (has links)
Espalhamento de íons de energia intermediária (MEIS) é uma técnica analítica de feixe de íons que pode determinar quantitativamente composições elbmentares e perfis I de profundidade com resolução subnanométrica. Dessa maneira, MEIS pode ser uma poderosa ferramenta para caracterização de nanopartículas, em partichlar das suas composições internas, o que é dificilmente obtido por qualquer outra técn~ca analítica. Para esse propósito, foi desenvolvido uma simulação Monte Cado de espec~ros de MEIS que considera qualquer geometria e distribuição de tamanhos das nanoestfuturas. Esse método também considera a assimetria da distribuição da perda de ene~gia devido a uma única colisão violenta, como a que ocorre no evento de retroespalhaménto. Usando esse método, estudamos a influência da geometria das nanopartículas, den~idade superficial, distribuição de tamanhos e forma de linha da perda de energia nos espectros 2D (energia) I e 3D (energia e ângulo) de MEIS. Os principais resultados desse estudo podem ser resumidos como segre: i) observamos que a influência da distribuição da perda de energia no espectro de MEIS é significativa apenas para nanoestruturas pequenas (diâmetro < 10 nm) mas a especificação da geometria correta das estruturas é significativa para todos os tamanhos; ii) negligenciar a assimetria da perda de energia devido à colisão de retroespalhamento pode resultar na interpretação de uma falsa distribuição de tamanhos para nanopartículas pequenas; iii) simulações para um exemplo hipotético de pequenas nanopartículas esféricas de ZnSe mostram que a técnica MEIS é capaz de realizar perfil de profundidade dentro das nano- I estruturas. Finalmente, medimos uma amostra de nanopartículas de ouro, adsqrvidas sobre um filme multicamadas de polieletrólitos fracos, a fim de obter a geometri e a distribuição de nanopartículas de ouro por MEIS. Os resultados concordam muito bem com a imagem obtida por microscopia eletrônica de transmissão (TEM). Além disso, niostramos que os espectros de MEIS não podem ser ajustados supondo um filme de ouro padrão. / Medium energy ion scattering (MEIS) is an ion-beam analytical te~hnique which can quantitatively determine elemental compositions and depth profiles w~th subnanometric depth resolution. In this way, MEIS can be a powerful tool for characterization of nanoparticles, in particular of their inner composition, which is hardly achieved by any other analytical technique. For this purpose a Monte Carlo simulation of MEIS spectra that considers any geometry and size distribution of the nanostructures walsdeveloped. This method also considers the asymmetry of the energy-loss distribution due\to a single violent collision such as the backscattering evento Using this method we studied the influence of I the geometry of the nanoparticles, superficial density, size distribution a'ildthe energy-loss line-shape on the 2D (energy) and 3D (energy and angle) MEIS spectra. The main results of the present investigation can be summarized :as follows: i) we observed that the influence of energy-loss distribution on the MEIS sp~ectrumis significant only for smalI nanoparticles (diameter < 10 nm) but use of the actual nanoparticle geometry is significant for alI sizes of nanostructures; ii) neglecting the asymmetry of the energy-loss due to the backscattering colIision may be misinterpreted as a false size distribution for smalI nanoparticles; iii) simulations for a hypothetical example of smalI spherical ZnSe nanoparticles show that the MEIS technique is capable to perform depth profile inside the nanostructures. FinalIy we have measured a sample of gold nanoparticles adsorbed op a multilayered film of weak polyeletrolites in arder to obtain the shape and the size distribution of gold nanoparticles by MEIS. The results agree quite welI with the image obtained by transmission electron microscopy (TEM). Furthermore we show that the MEIS spectra cannot be fitted by assuming a standard Au film.
|
10 |
Perda de energia e potenciais de espalhamento para o freamento de prótons e dímeros / Energy loss and scattering potentials for stopping of protons and dimersSilva, Flávio Matias da January 2018 (has links)
A partir de uma abordagem teórica e experimental, a perda de energia ou a força de freamento de íons individuais e dímeros atravessando um gás de elétrons livres (teoricamente) e um meio sólido (experimentalmente) e investigada cuidadosamente neste trabalho. Do ponto de vista teórico, a descrição da interação de íons com um gás de elétrons e feita em termos do potencial de espalhamento elétron- on. Os resultados mostram diferentes soluções para os potenciais auto-consistentes em baixas energias dos projéteis, as quais são relacionadas a diferentes graus de excitação da nuvem eletrônica em torno do projétil. Uma interpolação dinâmica do potencial de espalhamento V (r) e proposta e usada para calcular a força de freamento. Esses resultados estão em bom acordo com os cálculos de benchmark da TD-DFT, bem como com os dados experimentais. Experimentalmente, focamos nosso estudo na técnica de espalhamento de íon de energia média (MEIS) para a obtenção da perda de energia de íons de H+ e HeH+ em Al2O3. O objetivo dessa investigação e melhorar nosso entendimento do efeito de vizinhança negativo e positivo observado na perda de energia de íons moleculares. Em baixas energias, esse efeito de vizinhança e caracterizado por uma interferência negativa que e responsável pela menor perda de energia dos fragmentos dos íons moleculares quando comparada ao caso onde os fragmentos estão longe um do outro. Em altas energias o efeito se inverte. Motivados por uma descrição mais acurada desses efeitos, um novo modelo não linear foi desenvolvido através da generalização do modelo da abordagem da densidade induzida (IDA) para a interação de íons moleculares com um gás de elétrons livres, nomeadamente como IDA-Mol. Para o potencial de espalhamento dos dímeros e proposta uma correção para a carga de polarização em torno do on Z1 devido a vizinhan ca de um on Z2. A análise dos resultados obtidos a partir da IDA-Mol nos permitiu, pela primeira vez, explicar a origem do efeito de vizinhança negativo (baixas energias) e positivo (altas energias), bem como a transição abrupta observada entre os efeitos negativos e positivos do efeito de vizinhança na perda de energia. / From a theoretical and experimental approach, the energy loss or the stopping force of individual ions and dimers in a free electrons gas (FEG) (theoretically) and in a solid medium (experimentally) is carefully investigated in this work. From the theoretical point of view, the description of the interaction of ions with an electron gas is made in terms of the electron-ion scattering potential. The results show di erent solutions for the self-consistent potentials at low energies of the projectiles, which are related to di erent degrees of excitation of the electronic cloud around the projectile. A dynamic interpolation of the scattering potential V (r) is proposed and used to calculate the stopping force. These results are in good agreement with TD-DFT benchmark calculations, as well as with the experimental data. Experimentally, we focused our study on the medium energy ion scattering (MEIS) technique to obtain the energy loss of H+ ions and HeH+ dimers in Al2O3. The aim of this investigation is to improve our understanding of the negative and positive vicinage e ects observed in the energy loss of dimers. At low energies, this vicinage e ect is characterized by a negative interference that is responsible for the lower energy loss of the dimer fragments when compared to the case where the fragments are far from each other. At high energies the e ect is reversed. Motivated by a more accurate description of these e ects, a new nonlinear model was developed through the generalization of the induced density approach (IDA) model for the interaction of dimers with a free electron gas, namely IDA-Mol. For the scattering potential of the dimers a correction is proposed for the polarization charge around the ion Z1 due to the Z2 companion. The analysis of the results obtained from the IDA-Mol allowed us, for the rst time, to explain the origin of the negative (low energies) and positive (high energies) vicinage e ects, as well as the abrupt transition observed between the negative and positive e ects of the vicinage e ect in the energy loss.
|
Page generated in 0.0863 seconds