Spelling suggestions: "subject:"perda dde pressão"" "subject:"perda dee pressão""
11 |
Estudo teórico e experimental sobre padrões de escoamento e perda de pressão durante escoamentos monofásicos e bifásicos no interior de tubos com fitas retorcidas / Theoretical and experimental study on flow pattern identification and pressure drop during single and two-phase flow in tubes with twisted tape insertsFabio Toshio Kanizawa 14 July 2011 (has links)
A presente dissertação trata de um estudo teórico-experimental sobre escoamento monofásico e bifásico no interior de tubos com fitas retorcidas. Esta técnica tem sido utilizada há várias décadas para a intensificação de troca de calor para escoamento monofásico e evaporação convectiva no interior de tubos. No entanto, com sua utilização, o aumento do coeficiente de troca de calor é acompanhado pelo incremento da perda de pressão. Portanto a compreensão dos fenômenos relacionados aos incrementos da perda de pressão e troca de calor são fundamentais para engenheiros projetistas. Neste estudo, inicialmente, é apresentada uma extensa revisão bibliográfica sobre padrões de escoamento, modelos para estimativa de fração de vazio e metodologias para previsão da perda de pressão em tubos com e sem fitas retorcidas para escoamentos bifásicos e monofásicos. Foram realizados experimentos em bancada experimental utilizando seção de testes com diâmetro interno de 15,9 mm e dois metros de comprimento com fitas apresentando razões de retorcimento de 3, 4, 9, 14 e , a última correspondente ao tubo sem inserto. Os experimentos foram executados para o refrigerante R134a, velocidades mássicas entre 75 e 250 kg/m²s, e títulos de vapor entre 5 e 95% no caso de escoamentos bifásicos. Resultados foram levantados para velocidades mássicas entre 100 e 450 kg/m²s para escoamentos monofásicos. Durante os ensaios foram levantados resultados de perda de pressão e identificados subjetivamente os respectivos padrões de escoamento. Como resultado final deste estudo é proposta uma correlação para previsão da perda de pressão durante o escoamento no interior de tubos com fitas retorcidas. / A theoretical and experimental study on single and two-phase flow inside tubes with twisted tapes inserts is presented. Twisted tape inserts have been used for decades as a technique of heat transfer enhancement. However, their heat transfer enhancement is accompanied by an increase of the pressure drop. Therefore, understanding the pressure drop and heat transfer mechanisms is fundamental for heat exchanger designers in order to optimize these devices when using twisted-tape inserts. Based on these aspects the present study concerns single and two-phase flows inside tubes with twisted tapes. Experiments were performed in an experimental apparatus for a 15.9 mm ID and twisted tape with twist ratios of 3, 4, 9, 14 and , the last one corresponding to a plain tube without tape. For two-phase flow, experiments were conducted for R134a, mass velocities from 75 to 250 kg/m²s and vapor qualities from 5 to 95%. In case of single-phase flow, experiments were performed for mass velocities from 100 to 450 kg/m²s. The experimental campaign was focused on pressure drop and flow pattern subjective identification. Additionally an extensive literature review on flow patterns, superficial void fraction, and methodologies for prediction of the pressure drop in plain tubes with and without twisted-tape inserts during single and two-phase flow is presented. As final result, a correlation for prediction of pressure drop during flow inside tubes with twisted tape inserts is proposed.
|
12 |
Estudo teórico-experimental da ebulição convectiva do refrigerante R-134a em tubos lisos / A theoretical and experimental study of convective boiling of refrigerant R-134a in smooth tubesPaulo Eduardo Lopes Barbieri 02 September 2005 (has links)
Apresenta um estudo teórico-experimental da ebulição convectiva do fluido refrigerante R-134a no interior de tubos lisos. Os parâmetros físicos disponíveis para medida foram: pressão, temperatura, vazão de refrigerante e potência de aquecimento, os quais, juntamente com o registro fotográfico, foram utilizados para caracterizar os padrões de escoamento e as transições, investigando-se os efeitos do diâmetro do tubo, da velocidade mássica e do fluxo de calor sobre a perda de pressão e a transferência de calor. Os principais padrões de escoamento visualizados foram: o intermitente, o anular e o estratificado, nos quais constatou-se que, as transições são governadas, principalmente, pelos efeitos da velocidade mássica e do diâmetro do tubo. Dentre estes padrões de escoamento, o anular e o estratificado foram modelados analiticamente. O modelo para o escoamento anular foi utilizado na obtenção de correlações para o fator de atrito interfacial e para espessura do filme de líquido. O modelo para o escoamento estratificado foi dividido em duas partes, uma destinada a obter a configuração da interface, a qual se mostrou côncava e a outra destinada à determinação dos fatores de atrito líquido-parede e interfacial os quais foram correlacionados / The research reports a theoretical and experimental study of convective boiling of refrigerant R-134a in smooth tubes. Tests have been carried out to measure the following physical parameters at the test section: mass flow rate, pressure and pressure drop, refrigerant and surface temperatures and the electrical power. In addition to these parameters, a photographic study has been carried out from pictures taken at the test section exit in order to determine the flow regimes that intervene under the imposed operating conditions. Effects over the pressure drop and heat transfer of the mass flow rate, heat flux, quality, and tube diameter have been investigated. Three flow regimes have been found: the intermitent, the stratified and the annular. Flow regime transitions are apparently governed by the mass velocity and tube diameter. The annular and the stratified flow regimes have been semi-empirically modeled using a mechanistic approach. The annular flow model has been applied to develop correlations for two important physical parameters: the interfacial friction factor and the film thickness. Through the stratified model, the shape of the interface has been evaluated along with correlations for the liquid to wall and interface friction factors
|
13 |
Theoretical and experimental study on convective boiling inside tubes containing twisted-tape inserts / Estudo teórico e experimental sobre a ebulição convectiva no interior de tubos com fitas retorcidasMogaji, Taye Stephen 25 March 2014 (has links)
This research comprises an experimental and theoretical study on convective boiling inside tubes containing twisted-tape inserts. The demand for more compact and efficient thermal systems, in which the heat exchangers plays an important role, has led to the development and use of various heat transfer enhancement techniques. Among them twisted-tape insert as a swirl flow device is one of the most used. Twisted-tape inserts have been used for over more than one century ago as a technique of heat transfer enhancement applied to heat exchangers. However, the heat transfer augmentation comes together with pressure drop increment, impacting the pumping power and, consequently, the system efficiency. Moreover, until now it is not clear, the operational conditions under which the heat transfer coefficient augmentation by the use of twisted-tape inserts overcomes pressure drop penalty. In the present study, initially, extensive investigations of the literature concerning convective boiling inside plain tubes with and without twisted-tape inserts were performed. This literature review covers pressure drop, heat transfer coefficient and the leading frictional pressure drop gradient and heat transfer coefficient predictive methods during convective boiling inside tubes with and without twisted-tape inserts. Then, pressure drop and heat transfer coefficient results acquired in the present study were obtained in an experimental apparatus of 12.7 and 15.9 mm ID tubes during flow boiling of R134a for twisted-tape ratios of 3, 4, 9, 14 and tubes without inserts, mass velocities ranging from 75 to 200 kg/m2 s, saturation temperatures of 5 and 15°C and heat fluxes of 5 and 10 kW/m2. The experimental results were parametrically analyzed and compared against the predictive methods from literature. An analysis of the enhancement of the heat transfer coefficient and the pressure drop penalty is presented. Heat transfer coefficient increments up to 45% keeping the same pumping power and pressure drop penalty of about 35% were obtained by using twisted-tape relative to tubes without inserts. Additionally, through comparison of the present study experimental results with the predictive methods from the literature for heat transfer coefficient during two-phase flow inside tube containing twisted-tape inserts, it was verified that non of these methods predict satisfactory well the experimental results. However, a new method was develop for predicting the heat transfer coefficient during flow boiling inside tubes containing twisted-tape inserts based on the experimental results obtained in the present study. The predictive method takes into account the physical picture of the swirl flow phenomenon by including swirl flow effects promoted by the twisted-tape inserts. The proposed method predicts satisfactorily well the data obtained in the present study, predicting 89.1% of the experimental data within an error band of ± 30% and absolute mean deviation of 15.7%. / A presente pesquisa trata-se de um estudo teórico e experimental sobre a ebulição convectiva no interior de tubos com fitas retorcidas. A crescente demanda por sistemas térmicos mais compactos e eficientes, nos quais os trocadores de calor apresentam elevada relevância, tem motivado o desenvolvimento de inúmeras técnicas de intensificação de troca de calor, sendo que a utilização de fitas retorcidas é uma das técnicas mais adotadas. Fitas retorcidas são utilizadas como técnicas de intensificação de troca de calor há mais de um século. Entretanto o incremento da transferência de calor é acompanhado do aumento da perda de pressão, que por sua vez implica em aumento da potência de bombeamento, e consequentemente afeta a eficiência global do sistema. Adicionalmente, até os dias de hoje não há consenso sobre as condições operacionais em que o ganho com o incremento do coeficiente de transferência de calor é superior à perda devido ao aumento da perda de pressão. Neste estudo, inicialmente foi realizada uma extensa revisão da literatura sobre a ebulição convectiva no interior de tubos com e sem fitas retorcidas. Esta revisão aborda aspectos relacionados à perda de pressão e ao coeficiente de transferência de calor, juntamente com os métodos de previsão destes parâmetros. Foram realizados experimentos para determinação experimental de perda de pressão e coeficiente de transferência de calor, em aparato experimental contando com tubos horizontais com diâmetros internos iguais a 12,7 e 15,9 mm, para escoamento bifásico de R134a, razões de retorcimento iguais a 3, 4, 9, 14 e tubo sem fita, velocidades mássicas entre 75 e 200 kg/m²s, temperaturas de saturação iguais a 5 e 15°C, e fluxo de calor iguais a 5 e 10 kW/m². Os resultados experimentais foram analisados e comparados com estimativas segundo métodos disponíveis na literatura. Uma análise do aumento do coeficiente de transferência de calor e da perda de pressão friccional é apresentada. Foram verificados incrementos do coeficiente de transferência de calor de até 45% para a mesma potência de bombeamento, e aumento de perda de pressão de aproximadamente 35% para tubos com fitas retorcidas em relação aos tubos sem fita. Adicionalmente, através da comparação dos resultados experimentais com os métodos de previsão para coeficiente de transferência de calor, foi verificado que nenhuma metodologia apresentava previsões satisfatórias dos resultados. Portanto um novo método para previsão do coeficiente de transferência de calor durante ebulição convectiva no interior de tubos com fitas retorcidas foi desenvolvido com base nos resultados experimentais obtidos durante o presente estudo. O método proposto é função de parâmetros geométricos e do escoamento, e também de parâmetros físicos do escoamento rotacional induzido pela fita. A metodologia desenvolvida apresenta previsões satisfatórias dos resultados experimentais, prevendo 89,1% dos resultados experimentais com erro inferior a ± 30% e erro médio absoluto igual a 15,7%.
|
14 |
Análise experimental dos efeitos do fluido e da orientação do escoamento no desempenho de dissipadores de calor baseados na ebulição convectiva em microcanais / Experimental evaluation of the effect of the fluid and the footprint orientation on the performance of a heat spreader based on flow boiling inside micro-scale channelsLeão, Hugo Leonardo Souza Lara 06 February 2014 (has links)
A pesquisa realizada envolveu a avaliação experimental dos efeitos do fluido e da orientação do escoamento no desempenho de um dissipador de calor baseado na ebulição convectiva em microcanais. Estes dissipadores de calor são usados como uma nova aplicação para a refrigeração dos novos dispositivos eletrônicos que geram altas taxas de calor. Efetuou-se inicialmente uma extensa pesquisa bibliográfica sobre o escoamento monofásico e a ebulição convectiva em microcanais e em multi-microcanais através da qual levantou-se os principais métodos de previsão do coeficiente de transferência de calor e da perda de pressão. Então, utilizando o aparato experimental desenvolvido durante o mestrado de Do Nascimento (2012) avaliou-se a transferência de calor e perda de pressão de um dissipador de calor baseado em multi-microcanais paralelos. O dissipador de calor avaliado possui 50 microcanais retangulares dispostos paralelamente com 15 mm de comprimento, 100 µm de largura, 500 µm de altura e espaçados de 200 µm. Ensaios experimentais foram executados para o R245fa, fluido de baixa pressão utilizado em ciclos frigoríficos de baixa pressão, e R407C, fluido de alta pressão usado para conforto térmico, temperatura de saturação de 25 e 31°C, velocidades mássicas de 400 a 1500 kg/m²s, graus de subresfriamento do líquido de 5, 10 e 15°C, título de vapor máximo de até 0,38, fluxos de calor de até 350 kW/m², e para 3 orientações diferentes do dissipador de calor, horizontal, vertical com os canais alinhados horizontalmente e vertical com escoamento ascendente. Os resultados obtidos foram parametricamente analisados e comparados com métodos da literatura. Coeficientes de transferência de calor médios de até 35 kW/m² °C foram obtidos. Resultados adquiridos para o R245fa e R407C foram inferiores aos levantados por Do Nascimento (2012) para o R134a utilizando o mesmo dissipador. O fluido R407C apresentou frequências e amplitudes de oscilações inferiores aos fluidos R134a e R245fa. Nenhum método para o coeficiente de transferência de calor e perda de pressão proporcionou previsões satisfatórias dos dados experimentais. O modelo Homogêneo com viscosidade da mistura bifásica dada por Cicchitti et al. (1960) apresentou as melhores previsões da perda de pressão, já para o coeficiente de transferência de calor, os métodos de Bertsch et al. (2009) e Liu e Winterton (1991) apresentaram as melhores previsões. O dissipador com sua base posicionada horizontalmente fornece coeficientes de transferência de calor superiores enquanto sua base na vertical e escoamento ascendente verificam-se perdas de pressão inferiores. Imagens do escoamento bifásico foram obtidas com uma câmera de alta velocidade e analisadas. / This study presents an experimental investigation on the effect of the fluid and the footprint orientation on the performance of a heat spreader based on flow boiling inside micro-scale channels. This heat spreader is used in an electronics cooling application with high-power density. Initially an extensive investigation of the literature concerning single-phase and two-phase flow inside a single microchannels and multi-microchannels was performed. In this literature review the leading predictive methods for heat transfer coefficient and pressure drop are described. The experimental study was carried out in the apparatus developed by Do Nascimento (2012). The heat sink evaluated in the present study is comprised of fifty parallel rectangular microchannels with cross-sectional dimensions of 100 µm width and of 500 µm depth, and total length of 15 mm. The fins between consecutive microchannels are 200 µm thick. Experimental tests were performed for R245fa, low-pressure fluid used in low pressure refrigeration cycles, and R407C, high-pressure fluid used for heat comfort, saturation temperature of 25 and 31°C, mass velocities from 400 to 1500 kg/m² s, degrees of subcooling of the liquid of 5, 10 and 15°C, outlet vapor quality up to 0.38, heat fluxes up to 350 kW/m², and for the following footprint heat sink orientations: horizontal, vertical with the microchannels aligned horizontally and vertical with upward flow. The results were parametrically analyzed and compared again the predictive methods from literature. Average heat transfer coefficients up to 35 kW/m² °C were obtained. The results for R134a from Do Nascimento (2012) for the same heat sink presented heat transfer coefficients higher than R245fa and R407C. The fluid R407C presented oscillation of the temperature due to thermal instability effects with lower frequency and amplitude lower than R134a, and R245fa. None predictive method provided satisfactory heat transfer coefficient and pressure drop predictions of the experimental data. The Homogeneous model with the viscosity given by Cicchitti et al. (1960) provided the best pressure drop prediction while the heat transfer coefficient was best predicted by Bertsch et al. (2009) and Liu and Winterton (1991). The horizontal orientation of the footprint provided the highest heat transfer coefficients while the vertical footprint orientation with upward flow the lowest pressure drops. Images of the two-phase flow were obtained with a high-speed camera and analyzed.
|
15 |
Estudo da transferência de calor e queda de pressão na ebulição do r-600a em mini canais paralelosBeckerle, Bruno de Sá 05 January 2015 (has links)
Submitted by Maicon Juliano Schmidt (maicons) on 2015-05-25T14:45:18Z
No. of bitstreams: 1
Bruno de Sá Beckerle.pdf: 3991624 bytes, checksum: 500b993c0f3a1c3a8c3abae05ed51c5e (MD5) / Made available in DSpace on 2015-05-25T14:45:18Z (GMT). No. of bitstreams: 1
Bruno de Sá Beckerle.pdf: 3991624 bytes, checksum: 500b993c0f3a1c3a8c3abae05ed51c5e (MD5)
Previous issue date: 2015-01-05 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Este trabalho apresenta um estudo experimental da transferência de calor e queda de pressão na ebulição do isobutano, R-600a, em um tubo composto por 7 mini canais paralelos, cujo diâmetro hidráulico é de 1,47 mm. Os testes em ebulição foram realizados com uma temperatura de saturação de 22 ºC e pressão de saturação de 302 kPa, com velocidade mássica entre 50 e 200 kg/(m²s) e fluxos de calor na seção de testes entre 7 e 40 kW/m². Com os testes realizados verificou-se que o coeficiente de transferência de calor aumenta conforme o incremento do fluxo de calor e velocidade mássica, sendo que esta última tem maior influência para baixos títulos de vapor. O coeficiente de transferência de calor atingiu valores máximos próximos a 3.200 W/(m²K) para a condição de maior vazão e fluxo de calor. A queda de pressão aumentou com o incremento da velocidade mássica e título de vapor em todos os testes, enquanto que o fluxo de calor apresentou influência na queda de pressão apenas nas maiores velocidades mássicas. A perda de pressão por atrito representou até 93,7% da perda total. Também foram analisados os padrões de escoamento, sendo observados os padrões de bolhas isoladas, bolhas alongadas, intermitente e anular, sendo que o padrão de bolhas isoladas foi observado para baixos fluxos e títulos de vapor, e o padrão anular mostrou-se presente para títulos superiores a 0,13. / This work presents an experimental study of heat transfer and drop pressure in flow boiling of the isobutane, R-600a, in a 7 mini channel of 1,47 mm hydraulic diameter. The tests were performed a boiling with a saturation temperature of 22 °C and saturation pressure of 302 kPa, with a mass velocity between 50 and 200 kg/(m²s) and heat fluxes in the test section between 7 and 40 kW/m². In the tests, it was found that the heat transfer coefficient increases with increasing heat flux and mass velocity has more influence at low quality. The heat transfer coefficient achieved values around 3.200 W/(m²K) for the condition of greater flow and heat flux. The drop pressure was increase by increasing the mass velocity and quality in all tests, while the heat flow have any influence on the drop pressure to the greater mass velocity. The friction drop pressure represented to 93.7% of the total loss. As well analyzed the flow patterns, and observing the patterns of isolated bubbles, plugs/slugs, intermittent and annular, and that the pattern of isolated bubbles were observed for low quality and heat flux and the annular pattern was present for quality from 0.13.
|
16 |
Estudo teórico e experimental da transferência de calor durante a condensação e perda de pressão no interior de minicanais para os refrigerantes R1234ze(E) e R32 com reduzido GWP / Experimental and theoretical studies on heat transfer condensation and two-phase pressure drop inside minichannels for the low GWP refrigerants R1234ze(E) e R32Silva, Jaqueline Diniz da 28 April 2017 (has links)
Recentemente, observa-se o crescimento do número de trocadores de calor baseados em microcanais devido a necessidade de transferência de elevadas taxas de calor utilizando dispositivos compactos. Tubos de calor, trocadores de calor compactos para equipamentos eletrônicos e controle térmico de satélites, sistemas de condicionamento de ar para automóveis, escritórios e residências são exemplos de aplicações para condensação em canais de diâmetro reduzido. No entanto, na literatura encontra-se reduzido número de estudos experimentais tratando da condensação no interior de canais com diâmetros inferiores a 3 mm, os quais geralmente envolvem refrigerantes com elevado potencial de aquecimento global (GWP). Neste contexto, o presente estudo apresenta uma revisão crítica da literatura envolvendo critérios de transição entre padrões de escoamento, perda de pressão por atrito e coeficiente de transferência de calor durante a condensação no interior de canais convencionais e de micro-escala (minicanais). Levantou-se resultados para o gradiente de pressão por atrito e coeficiente de transferência de calor em aparato experimental localizado na Universidade de Pádua (Università Degli Studi di Padova) para os fluidos refrigerante R1234ze(E) e R32 (GWP de 550 e 6, respectivamente), temperatura de saturação de 40°C, fluxo de calor até 35 kW/m², grau de sub-resfriamento da parede entre 2 e 10 K, velocidade mássicas entre 55 e 275 kg/m²s e título de vapor de 0 a 1. Os dados foram levantados em seção de teste composta por 36 minicanais com diâmetro hidráulico de 1,6 mm e geometria retangular, com o efeito de resfriamento obtido através de água resfriada escoando em contra-corrente ao refrigerante. Os dados experimentais levantados para o gradiente de pressão por atrito e o coeficiente de transferência de calor foram comparados com métodos de previsão da literatura, concluindo que as correlações propostas por Jige, Inoue e Koyama (2016) fornecem as melhores previsões. O comportamento do coeficiente de transferência de calor foi analisado com foco nos mecanismos físicos predominantes durante a condensação. A partir desta análise concluiu-se o predomínio de efeitos de tensão superficial em velocidades mássicas reduzidas e de arrasto em velocidades mássicas elevadas. Este estudo também apresenta uma avaliação comparativa do desempenho dos refrigerantes R1234ze(E) e R32 em relação ao R134a (GWP de 1300) baseada na taxa de transferência de calor por unidade de potência de bombeamento e no potencial de transferência de calor, conforme o critério proposto por Cavallini et al. (2010). Esta análise revelou o desempenho superior para o refrigerante R32 seguido do R134a, com o R1234ze(E) apresentando o pior resultado, independentemente da velocidade mássica. / Recently, micro-scale channels are increasingly being used to combine high heat transfer rates and high degree of compactness. Condensation inside small diameter channels can be found in several applications such as heat pipes, thermal management of electronic equipments, spacecraft thermal control, automotive and residential air conditioning systems, heat pumps and refrigeration systems. However, despite of its importance, few studies concerning condensation inside minichannels (DH < 3 mm) involving low GWP (Global Warming Potential) refrigerants are found in the literature. In this context, initially, this study presents a critical review on the literature involving transition criteria on two-phase flow patterns for micro- and macro-scale conditions, frictional pressure drop and heat transfer coefficient during condensation inside channels. Experimental results for frictional pressure gradient and heat transfer coefficient obtained in apparatus located at the University of Padua (Università Degli Studi di Padova) are carefully analysed. The database includes results for the refrigerants R1234ze(E) and R32 (GWP of 550 and 6, respectively), saturation temperature of 40°C, heat flux up to 35 kW/m², fluid and wall temperature diference up to 10 K, mass velocity in the range of 55 to 275 kg/m²s and vapor quality between 0 and 1. The test section is composed of 36 rectangular minichannels with hydraulic diameter of 1.6 mm. The refrigerant is cooled by water flowing. From a comparison of experimental data for frictional pressure drop and heat transfer coefficient, and prediction methods available in literature, the methods proposed by Jige, Inoue e Koyama (2016) were ranked as the best ones. During the data analyses, focus was put on in order to relate the heat transfer coefficient behavior with the prevailing mecanisms during condensation. Based on this carefull analysis, the predominance of surface tension effects was pointed out under conditions of low mass velocities and condensation inside rectangular minichannels. On the other hand, for high mass velocities shear stress effects prevailed. Also, it has been presented a comparative evaluation of the performance of the refrigerants R1234ze(E), R32 and R134a (GWP of 1300) based on the following criteria: (i) heat transfer rate per unit of power pumping; and (ii) a penalty factor based on the heat transfer potential proposed by Cavallini et al. (2010). According to this evaluation, independently of the mass velocity, the refrigerant R32 was ranked as the one presenting the best performance, followed by R134a ranked as the second best. The refrigerant R1234ze(E) provided the worst performance among them all.
|
17 |
Estudo teórico e experimental da transferência de calor durante a condensação e perda de pressão no interior de minicanais para os refrigerantes R1234ze(E) e R32 com reduzido GWP / Experimental and theoretical studies on heat transfer condensation and two-phase pressure drop inside minichannels for the low GWP refrigerants R1234ze(E) e R32Jaqueline Diniz da Silva 28 April 2017 (has links)
Recentemente, observa-se o crescimento do número de trocadores de calor baseados em microcanais devido a necessidade de transferência de elevadas taxas de calor utilizando dispositivos compactos. Tubos de calor, trocadores de calor compactos para equipamentos eletrônicos e controle térmico de satélites, sistemas de condicionamento de ar para automóveis, escritórios e residências são exemplos de aplicações para condensação em canais de diâmetro reduzido. No entanto, na literatura encontra-se reduzido número de estudos experimentais tratando da condensação no interior de canais com diâmetros inferiores a 3 mm, os quais geralmente envolvem refrigerantes com elevado potencial de aquecimento global (GWP). Neste contexto, o presente estudo apresenta uma revisão crítica da literatura envolvendo critérios de transição entre padrões de escoamento, perda de pressão por atrito e coeficiente de transferência de calor durante a condensação no interior de canais convencionais e de micro-escala (minicanais). Levantou-se resultados para o gradiente de pressão por atrito e coeficiente de transferência de calor em aparato experimental localizado na Universidade de Pádua (Università Degli Studi di Padova) para os fluidos refrigerante R1234ze(E) e R32 (GWP de 550 e 6, respectivamente), temperatura de saturação de 40°C, fluxo de calor até 35 kW/m², grau de sub-resfriamento da parede entre 2 e 10 K, velocidade mássicas entre 55 e 275 kg/m²s e título de vapor de 0 a 1. Os dados foram levantados em seção de teste composta por 36 minicanais com diâmetro hidráulico de 1,6 mm e geometria retangular, com o efeito de resfriamento obtido através de água resfriada escoando em contra-corrente ao refrigerante. Os dados experimentais levantados para o gradiente de pressão por atrito e o coeficiente de transferência de calor foram comparados com métodos de previsão da literatura, concluindo que as correlações propostas por Jige, Inoue e Koyama (2016) fornecem as melhores previsões. O comportamento do coeficiente de transferência de calor foi analisado com foco nos mecanismos físicos predominantes durante a condensação. A partir desta análise concluiu-se o predomínio de efeitos de tensão superficial em velocidades mássicas reduzidas e de arrasto em velocidades mássicas elevadas. Este estudo também apresenta uma avaliação comparativa do desempenho dos refrigerantes R1234ze(E) e R32 em relação ao R134a (GWP de 1300) baseada na taxa de transferência de calor por unidade de potência de bombeamento e no potencial de transferência de calor, conforme o critério proposto por Cavallini et al. (2010). Esta análise revelou o desempenho superior para o refrigerante R32 seguido do R134a, com o R1234ze(E) apresentando o pior resultado, independentemente da velocidade mássica. / Recently, micro-scale channels are increasingly being used to combine high heat transfer rates and high degree of compactness. Condensation inside small diameter channels can be found in several applications such as heat pipes, thermal management of electronic equipments, spacecraft thermal control, automotive and residential air conditioning systems, heat pumps and refrigeration systems. However, despite of its importance, few studies concerning condensation inside minichannels (DH < 3 mm) involving low GWP (Global Warming Potential) refrigerants are found in the literature. In this context, initially, this study presents a critical review on the literature involving transition criteria on two-phase flow patterns for micro- and macro-scale conditions, frictional pressure drop and heat transfer coefficient during condensation inside channels. Experimental results for frictional pressure gradient and heat transfer coefficient obtained in apparatus located at the University of Padua (Università Degli Studi di Padova) are carefully analysed. The database includes results for the refrigerants R1234ze(E) and R32 (GWP of 550 and 6, respectively), saturation temperature of 40°C, heat flux up to 35 kW/m², fluid and wall temperature diference up to 10 K, mass velocity in the range of 55 to 275 kg/m²s and vapor quality between 0 and 1. The test section is composed of 36 rectangular minichannels with hydraulic diameter of 1.6 mm. The refrigerant is cooled by water flowing. From a comparison of experimental data for frictional pressure drop and heat transfer coefficient, and prediction methods available in literature, the methods proposed by Jige, Inoue e Koyama (2016) were ranked as the best ones. During the data analyses, focus was put on in order to relate the heat transfer coefficient behavior with the prevailing mecanisms during condensation. Based on this carefull analysis, the predominance of surface tension effects was pointed out under conditions of low mass velocities and condensation inside rectangular minichannels. On the other hand, for high mass velocities shear stress effects prevailed. Also, it has been presented a comparative evaluation of the performance of the refrigerants R1234ze(E), R32 and R134a (GWP of 1300) based on the following criteria: (i) heat transfer rate per unit of power pumping; and (ii) a penalty factor based on the heat transfer potential proposed by Cavallini et al. (2010). According to this evaluation, independently of the mass velocity, the refrigerant R32 was ranked as the one presenting the best performance, followed by R134a ranked as the second best. The refrigerant R1234ze(E) provided the worst performance among them all.
|
18 |
Análise experimental dos efeitos do fluido e da orientação do escoamento no desempenho de dissipadores de calor baseados na ebulição convectiva em microcanais / Experimental evaluation of the effect of the fluid and the footprint orientation on the performance of a heat spreader based on flow boiling inside micro-scale channelsHugo Leonardo Souza Lara Leão 06 February 2014 (has links)
A pesquisa realizada envolveu a avaliação experimental dos efeitos do fluido e da orientação do escoamento no desempenho de um dissipador de calor baseado na ebulição convectiva em microcanais. Estes dissipadores de calor são usados como uma nova aplicação para a refrigeração dos novos dispositivos eletrônicos que geram altas taxas de calor. Efetuou-se inicialmente uma extensa pesquisa bibliográfica sobre o escoamento monofásico e a ebulição convectiva em microcanais e em multi-microcanais através da qual levantou-se os principais métodos de previsão do coeficiente de transferência de calor e da perda de pressão. Então, utilizando o aparato experimental desenvolvido durante o mestrado de Do Nascimento (2012) avaliou-se a transferência de calor e perda de pressão de um dissipador de calor baseado em multi-microcanais paralelos. O dissipador de calor avaliado possui 50 microcanais retangulares dispostos paralelamente com 15 mm de comprimento, 100 µm de largura, 500 µm de altura e espaçados de 200 µm. Ensaios experimentais foram executados para o R245fa, fluido de baixa pressão utilizado em ciclos frigoríficos de baixa pressão, e R407C, fluido de alta pressão usado para conforto térmico, temperatura de saturação de 25 e 31°C, velocidades mássicas de 400 a 1500 kg/m²s, graus de subresfriamento do líquido de 5, 10 e 15°C, título de vapor máximo de até 0,38, fluxos de calor de até 350 kW/m², e para 3 orientações diferentes do dissipador de calor, horizontal, vertical com os canais alinhados horizontalmente e vertical com escoamento ascendente. Os resultados obtidos foram parametricamente analisados e comparados com métodos da literatura. Coeficientes de transferência de calor médios de até 35 kW/m² °C foram obtidos. Resultados adquiridos para o R245fa e R407C foram inferiores aos levantados por Do Nascimento (2012) para o R134a utilizando o mesmo dissipador. O fluido R407C apresentou frequências e amplitudes de oscilações inferiores aos fluidos R134a e R245fa. Nenhum método para o coeficiente de transferência de calor e perda de pressão proporcionou previsões satisfatórias dos dados experimentais. O modelo Homogêneo com viscosidade da mistura bifásica dada por Cicchitti et al. (1960) apresentou as melhores previsões da perda de pressão, já para o coeficiente de transferência de calor, os métodos de Bertsch et al. (2009) e Liu e Winterton (1991) apresentaram as melhores previsões. O dissipador com sua base posicionada horizontalmente fornece coeficientes de transferência de calor superiores enquanto sua base na vertical e escoamento ascendente verificam-se perdas de pressão inferiores. Imagens do escoamento bifásico foram obtidas com uma câmera de alta velocidade e analisadas. / This study presents an experimental investigation on the effect of the fluid and the footprint orientation on the performance of a heat spreader based on flow boiling inside micro-scale channels. This heat spreader is used in an electronics cooling application with high-power density. Initially an extensive investigation of the literature concerning single-phase and two-phase flow inside a single microchannels and multi-microchannels was performed. In this literature review the leading predictive methods for heat transfer coefficient and pressure drop are described. The experimental study was carried out in the apparatus developed by Do Nascimento (2012). The heat sink evaluated in the present study is comprised of fifty parallel rectangular microchannels with cross-sectional dimensions of 100 µm width and of 500 µm depth, and total length of 15 mm. The fins between consecutive microchannels are 200 µm thick. Experimental tests were performed for R245fa, low-pressure fluid used in low pressure refrigeration cycles, and R407C, high-pressure fluid used for heat comfort, saturation temperature of 25 and 31°C, mass velocities from 400 to 1500 kg/m² s, degrees of subcooling of the liquid of 5, 10 and 15°C, outlet vapor quality up to 0.38, heat fluxes up to 350 kW/m², and for the following footprint heat sink orientations: horizontal, vertical with the microchannels aligned horizontally and vertical with upward flow. The results were parametrically analyzed and compared again the predictive methods from literature. Average heat transfer coefficients up to 35 kW/m² °C were obtained. The results for R134a from Do Nascimento (2012) for the same heat sink presented heat transfer coefficients higher than R245fa and R407C. The fluid R407C presented oscillation of the temperature due to thermal instability effects with lower frequency and amplitude lower than R134a, and R245fa. None predictive method provided satisfactory heat transfer coefficient and pressure drop predictions of the experimental data. The Homogeneous model with the viscosity given by Cicchitti et al. (1960) provided the best pressure drop prediction while the heat transfer coefficient was best predicted by Bertsch et al. (2009) and Liu and Winterton (1991). The horizontal orientation of the footprint provided the highest heat transfer coefficients while the vertical footprint orientation with upward flow the lowest pressure drops. Images of the two-phase flow were obtained with a high-speed camera and analyzed.
|
19 |
Theoretical and experimental study on convective boiling inside tubes containing twisted-tape inserts / Estudo teórico e experimental sobre a ebulição convectiva no interior de tubos com fitas retorcidasTaye Stephen Mogaji 25 March 2014 (has links)
This research comprises an experimental and theoretical study on convective boiling inside tubes containing twisted-tape inserts. The demand for more compact and efficient thermal systems, in which the heat exchangers plays an important role, has led to the development and use of various heat transfer enhancement techniques. Among them twisted-tape insert as a swirl flow device is one of the most used. Twisted-tape inserts have been used for over more than one century ago as a technique of heat transfer enhancement applied to heat exchangers. However, the heat transfer augmentation comes together with pressure drop increment, impacting the pumping power and, consequently, the system efficiency. Moreover, until now it is not clear, the operational conditions under which the heat transfer coefficient augmentation by the use of twisted-tape inserts overcomes pressure drop penalty. In the present study, initially, extensive investigations of the literature concerning convective boiling inside plain tubes with and without twisted-tape inserts were performed. This literature review covers pressure drop, heat transfer coefficient and the leading frictional pressure drop gradient and heat transfer coefficient predictive methods during convective boiling inside tubes with and without twisted-tape inserts. Then, pressure drop and heat transfer coefficient results acquired in the present study were obtained in an experimental apparatus of 12.7 and 15.9 mm ID tubes during flow boiling of R134a for twisted-tape ratios of 3, 4, 9, 14 and tubes without inserts, mass velocities ranging from 75 to 200 kg/m2 s, saturation temperatures of 5 and 15°C and heat fluxes of 5 and 10 kW/m2. The experimental results were parametrically analyzed and compared against the predictive methods from literature. An analysis of the enhancement of the heat transfer coefficient and the pressure drop penalty is presented. Heat transfer coefficient increments up to 45% keeping the same pumping power and pressure drop penalty of about 35% were obtained by using twisted-tape relative to tubes without inserts. Additionally, through comparison of the present study experimental results with the predictive methods from the literature for heat transfer coefficient during two-phase flow inside tube containing twisted-tape inserts, it was verified that non of these methods predict satisfactory well the experimental results. However, a new method was develop for predicting the heat transfer coefficient during flow boiling inside tubes containing twisted-tape inserts based on the experimental results obtained in the present study. The predictive method takes into account the physical picture of the swirl flow phenomenon by including swirl flow effects promoted by the twisted-tape inserts. The proposed method predicts satisfactorily well the data obtained in the present study, predicting 89.1% of the experimental data within an error band of ± 30% and absolute mean deviation of 15.7%. / A presente pesquisa trata-se de um estudo teórico e experimental sobre a ebulição convectiva no interior de tubos com fitas retorcidas. A crescente demanda por sistemas térmicos mais compactos e eficientes, nos quais os trocadores de calor apresentam elevada relevância, tem motivado o desenvolvimento de inúmeras técnicas de intensificação de troca de calor, sendo que a utilização de fitas retorcidas é uma das técnicas mais adotadas. Fitas retorcidas são utilizadas como técnicas de intensificação de troca de calor há mais de um século. Entretanto o incremento da transferência de calor é acompanhado do aumento da perda de pressão, que por sua vez implica em aumento da potência de bombeamento, e consequentemente afeta a eficiência global do sistema. Adicionalmente, até os dias de hoje não há consenso sobre as condições operacionais em que o ganho com o incremento do coeficiente de transferência de calor é superior à perda devido ao aumento da perda de pressão. Neste estudo, inicialmente foi realizada uma extensa revisão da literatura sobre a ebulição convectiva no interior de tubos com e sem fitas retorcidas. Esta revisão aborda aspectos relacionados à perda de pressão e ao coeficiente de transferência de calor, juntamente com os métodos de previsão destes parâmetros. Foram realizados experimentos para determinação experimental de perda de pressão e coeficiente de transferência de calor, em aparato experimental contando com tubos horizontais com diâmetros internos iguais a 12,7 e 15,9 mm, para escoamento bifásico de R134a, razões de retorcimento iguais a 3, 4, 9, 14 e tubo sem fita, velocidades mássicas entre 75 e 200 kg/m²s, temperaturas de saturação iguais a 5 e 15°C, e fluxo de calor iguais a 5 e 10 kW/m². Os resultados experimentais foram analisados e comparados com estimativas segundo métodos disponíveis na literatura. Uma análise do aumento do coeficiente de transferência de calor e da perda de pressão friccional é apresentada. Foram verificados incrementos do coeficiente de transferência de calor de até 45% para a mesma potência de bombeamento, e aumento de perda de pressão de aproximadamente 35% para tubos com fitas retorcidas em relação aos tubos sem fita. Adicionalmente, através da comparação dos resultados experimentais com os métodos de previsão para coeficiente de transferência de calor, foi verificado que nenhuma metodologia apresentava previsões satisfatórias dos resultados. Portanto um novo método para previsão do coeficiente de transferência de calor durante ebulição convectiva no interior de tubos com fitas retorcidas foi desenvolvido com base nos resultados experimentais obtidos durante o presente estudo. O método proposto é função de parâmetros geométricos e do escoamento, e também de parâmetros físicos do escoamento rotacional induzido pela fita. A metodologia desenvolvida apresenta previsões satisfatórias dos resultados experimentais, prevendo 89,1% dos resultados experimentais com erro inferior a ± 30% e erro médio absoluto igual a 15,7%.
|
20 |
Estudo experimental da ebulição de hidrocarbonetos em tubo de multi mini canaisSilva, Priscila Forgiarini da 06 November 2017 (has links)
Submitted by JOSIANE SANTOS DE OLIVEIRA (josianeso) on 2017-12-13T12:59:28Z
No. of bitstreams: 1
Priscila Forgiarini da Silva_.pdf: 2273220 bytes, checksum: 4943272627a06de991d941e1c6bfd457 (MD5) / Made available in DSpace on 2017-12-13T12:59:28Z (GMT). No. of bitstreams: 1
Priscila Forgiarini da Silva_.pdf: 2273220 bytes, checksum: 4943272627a06de991d941e1c6bfd457 (MD5)
Previous issue date: 2017-11-06 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / PROSUP - Programa de Suporte à Pós-Gradução de Instituições de Ensino Particulares / Este trabalho apresenta um estudo experimental da transferência de calor e queda de pressão na ebulição do isobutano, R600a, e do propano, R290, em um tubo composto por sete mini canais paralelos, cujo diâmetro hidráulico é de 1,47 mm. Os testes em ebulição foram realizados com uma temperatura de saturação de 20 ºC, para ambos os fluidos refrigerantes e pressão de saturação de 300 kPa, para o R600a e de 840 kPa para o R290, com velocidades mássicas entre 35 e 170 kg/(m²s) e fluxos de calor na seção de testes entre 5,3 e 21 kW/m². De acordo com os testes realizados verificou-se que o coeficiente de transferência de calor, para ambos os fluidos refrigerantes, aumenta conforme o incremento do fluxo de calor e velocidade mássica. O coeficiente de transferência de calor atingiu valores entre 1 a 18 kW/(m²K) para o R290 e de 1 a 9 kW/(m²K) para o R600a. A queda de pressão aumentou com o incremento da velocidade mássica e título de vapor em todos os testes, enquanto que o fluxo de calor apresentou influência na queda de pressão apenas nas maiores velocidades mássicas. Observou-se que a queda de pressão por aceleração apresenta a menor parcela, enquanto que, a queda de pressão por atrito apresenta a maior parcela. Na comparação entre o R290 e o R600a, verificou-se que o isobutano apresenta maior queda de pressão. Também foram analisados os padrões de escoamento, sendo observados os padrões de bolhas isoladas, pistonado, agitado, anular ondulado e anular, sendo que o padrão de bolhas isoladas foi observado somente para o R290, e o padrão anular mostrou-se presente para títulos superiores a 0,4. / This work presents an experimental study of heat transfer and pressure drop in boiling of isobutane, R600a, and propane, R290, in a tube composed of seven parallel mini channels, whose hydraulic diameter is 1.47 mm. Boiling tests were performed with a saturation temperature of 20 ºC for both refrigerants and saturation pressure of 300 kPa for R600a and 840 kPa for R290, with mass velocities between 35 and 170 kg/(m²s) and heat flux in the test section between 5.3 and 21 kW/m². According to the tests performed it was verified that the heat transfer coefficient for both refrigerant fluids increases as the heat flux and mass velocity increase. The heat transfer coefficient reached values between 1-18 kW/(m²K) for the R290 and 1-9 kW/(m²K) for the R600a. The pressure drop increased with increasing mass velocity and vapor quality in all tests, while the heat flux showed influence on the pressure drop only at higher mass velocities. It was observed that the pressure drop by acceleration presents the smallest portion, while the friction presents the largest portion. In the comparison between R290 and R600a, it was found that isobutane showed a higher pressure drop. Flow patterns were also analyzed, with isolated bubble, piston, agitated, annular and annular bubble patterns being observed, and the isolated bubble pattern was observed only for R290, and the annular pattern was present for quality higher than 0.4.
|
Page generated in 0.0802 seconds