• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Avaliação in situ do potencial da solução de AmF/NaF/SnCl2, associada ou não ao laser de CO2, em prevenir a erosão em esmalte dental bovino / In situ assessment of the potential of AmF/NaF/SnCl2 solution, associated or not to CO2 laser irradiation, on preventing dental enamel erosion

Oliveira, Thayanne Monteiro Ramos 15 December 2015 (has links)
Apesar de vários estudos terem demonstrado resultados promissores do uso da solução de AmF/NaF/SnCl2 no controle da erosão do esmalte dental, não existem relatos da sua associação com a irradiação do substrato com o laser de CO2, de comprimento de onda de 9,6 ?m. Desta forma, o presente estudo teve como objetivo avaliar o potencial da solução de AmF/NaF/SnCl2, associada ou não ao laser de CO2 (4,5 J/cm2, 20 Hz, 20 ?s), em controlar a erosão em esmalte dental bovino. Treze voluntários participaram desse estudo in situ, de delineamento cruzado, em 02 fases (04 dias cada), onde 04 tratamentos foram testados utilizando réplicas (n = 13): GC - nenhum tratamento (controle negativo); GF - solução de AmF/NaF/SnCl2 (controle positivo); GL - irradiação com laser de CO2 (9,6 ?m); GLF - laser de CO2 associado à solução de AmF/NaF/SnCl2. Os voluntários usaram dispositivos intra-bucais removíveis contendo 08 amostras de esmalte bovino. Na primeira fase, 07 voluntários utilizaram dispositivos intra-bucais contendo amostras dos grupos GC e GL, e outros 06 voluntários utilizaram dispositivos contendo amostras dos grupos GF e GLF. Na segunda fase, os voluntários foram cruzados, permitindo que todos os grupos experimentais fossem avaliados no meio bucal dos 13 voluntários da pesquisa. Os dispositivos intra-bucais foram removidos da boca para ciclagem erosiva ex-situ em ácido cítrico 0,65%, pH 3,6, durante 4 minutos, 2x/dia, em horários pré-determinados. As amostras foram avaliadas em perfilômetro óptico de não-contato (n = 13) para análise da perda de tecido mineral após o desafio erosivo, e um ensaio de ultramicrodureza transversal (n = 13) foi realizado com o objetivo de determinar a profundidade da área de desmineralização abaixo da superfície do esmalte erodido. A análise morfológica foi realizada utilizando microscopia eletrônica de varredura (MEV) (n = 3). Os dados foram analisados estatisticamente por meio do modelo ANOVA 2 fatores para medidas repetidas, com subsequente comparação entre os diferentes tratamentos (? = 0,05). A ciclagem ácida realizada no presente estudo provocou perda de esmalte significativamente maior (p < 0,001) nos grupos GC (4,8 ± 1,4A ?m) e GL (4,4 ± 2,0A ?m). Não houve diferença estatística entre a perda de superfície nos grupos GF (1,9 ± 0,9B ?m) e GLF (1,7 ± 0,9B ?m). Os resultados de ultramicrodureza transversal mostraram que as amostras tratadas com a solução fluoretada (grupo GF) apresentaram uma zona parcialmente desmineralizada com média de dureza semelhante às amostras do grupo que não recebeu qualquer tipo de tratamento (grupo GC), com ambos os grupos apresentando média de dureza significativamente maior que os grupos que foram irradiados com o laser de CO2 (GL e GLF) (p < 0,001). As micrografias mostraram que as características morfológicas superficiais do esmalte nos grupos irradiados com laser de CO2 apresentaram-se semelhantes nos grupos GL e GLF, verificando-se a presença de áreas sugestivas de derretimento, resolidificação, microporos e microtrincas, sem evidências de precipitados fluoretados no grupo GFL. Uma camada amorfa pôde ser observada nas superfícies de esmalte tratadas apenas com a solução fluoretada contendo estanho. Pode-se concluir que o uso do enxaguatório bucal fluoretado contendo estanho (500 ppm F-, 800 ppm Sn2+, pH = 4,5) mostrou potencial de prevenção da erosão de esmalte dental. A irradiação do esmalte dental com o laser associado à solução fluoretada mostrou-se eficaz, mas seu efeito não foi sinérgico. O laser de CO2 (9,6 ?m), nos parâmetros utilizados, não foi capaz de prevenir a erosão em esmalte causada por ácido cítrico. / Although several studies have shown promising results using the AmF/NaF/SnCl2 solution in preventing the erosion of dental enamel, there are no reports of their association with the irradiation of the substrate with the CO2 laser, working at 9.6 ?m. Thus, this study aimed to evaluate the potential of AmF/NaF/SnCl2 solution, associated or not to CO2 laser irradiation (4.5 J/cm2, 20 Hz, 20 ?s), to prevent erosion on dental enamel. Thirteen volunteers participated in this 2-phase (4 days each), crossover study, where 04 treatments were tested using replicas (n = 13): GC - no treatment (negative control); GF - AmF/NaF/SnCl2 solution (positive control); GL - CO2 laser irradiation (9.6 ?m); GLF - CO2 laser irradiation associated with AmF/NaF/SnCl2 solution. The volunteers wore removable intra-buccal appliances containing eight bovine enamel samples. In the first phase, seven volunteers used intra-oral appliances containing samples of groups GC and GL and 6 volunteers, appliances containing samples of groups GF and GLF. In the second phase volunteers were crossed over, allowing all experimental groups were evaluated in the buccal environment of the 13 volunteers. Intra-buccal appliances were removed from the mouth and were exposed to a daily ex-situ erosive cycling (0.65% citric acid, pH 3.6, for 4 minutes, 2x/day) at pre-determined times. Samples were evaluated for surface loss using an optical non-contact profilometer (n = 13) for analysis of loss of mineral after the erosive challenge and a cross-sectional nanohardness test (n = 13) was carried out in order to determine the depth of demineralized area below the erosive lesion. Morphological analysis was carried out using scanning electron microscopy (SEM) (n = 3). The data were statistically analyzed by two-way ANOVA repeated measures with subsequent pairwise comparison test (? = 0.05). Erosive challenge significantly increased enamel wear (p < 0.001) in GC (4.8 ± 1.4A ?m) and GL (4.4 ± 2.0A ?m) groups. There was no significant difference between the surface loss in GF (1.9 ± 0.9B ?m) and GLF (1.7 ±0.9B ?m) groups. Data from cross-sectional nanohardness showed that samples treated with stannous fluoride solution (GF group) showed a partially demineralized zone with average hardness similar to samples in the group that did not receive any treatment (GC group), both groups had significantly higher average nanohardness than the irradiated samples (GL and GLF group) (p < 0.001). Morphologically, all CO2 laser irradiated samples resulted in similar changes, showing the presence of areas suggestive of melting, resolidification and some microcracks. No fluoride precipitates were observed in GFL groups. An amorphous layer could be observed on the surface of enamel treated with tin-containing solution alone. Within the limits of this in situ study, it can be concluded that the AmF/NaF/SnCl2 solution (500 ppm F, 800 ppm Sn2+, pH = 4.5) showed potential for prevention of dental enamel erosion. The enamel irradiation with the CO2 laser associated with the fluoride solution was effective, but its effect was not synergistic. The CO2 laser (9.6 ?m), with the parameters considered in this study, was not able to prevent the enamel erosion caused by citric acid.
2

Avaliação in situ do potencial da solução de AmF/NaF/SnCl2, associada ou não ao laser de CO2, em prevenir a erosão em esmalte dental bovino / In situ assessment of the potential of AmF/NaF/SnCl2 solution, associated or not to CO2 laser irradiation, on preventing dental enamel erosion

Thayanne Monteiro Ramos Oliveira 15 December 2015 (has links)
Apesar de vários estudos terem demonstrado resultados promissores do uso da solução de AmF/NaF/SnCl2 no controle da erosão do esmalte dental, não existem relatos da sua associação com a irradiação do substrato com o laser de CO2, de comprimento de onda de 9,6 ?m. Desta forma, o presente estudo teve como objetivo avaliar o potencial da solução de AmF/NaF/SnCl2, associada ou não ao laser de CO2 (4,5 J/cm2, 20 Hz, 20 ?s), em controlar a erosão em esmalte dental bovino. Treze voluntários participaram desse estudo in situ, de delineamento cruzado, em 02 fases (04 dias cada), onde 04 tratamentos foram testados utilizando réplicas (n = 13): GC - nenhum tratamento (controle negativo); GF - solução de AmF/NaF/SnCl2 (controle positivo); GL - irradiação com laser de CO2 (9,6 ?m); GLF - laser de CO2 associado à solução de AmF/NaF/SnCl2. Os voluntários usaram dispositivos intra-bucais removíveis contendo 08 amostras de esmalte bovino. Na primeira fase, 07 voluntários utilizaram dispositivos intra-bucais contendo amostras dos grupos GC e GL, e outros 06 voluntários utilizaram dispositivos contendo amostras dos grupos GF e GLF. Na segunda fase, os voluntários foram cruzados, permitindo que todos os grupos experimentais fossem avaliados no meio bucal dos 13 voluntários da pesquisa. Os dispositivos intra-bucais foram removidos da boca para ciclagem erosiva ex-situ em ácido cítrico 0,65%, pH 3,6, durante 4 minutos, 2x/dia, em horários pré-determinados. As amostras foram avaliadas em perfilômetro óptico de não-contato (n = 13) para análise da perda de tecido mineral após o desafio erosivo, e um ensaio de ultramicrodureza transversal (n = 13) foi realizado com o objetivo de determinar a profundidade da área de desmineralização abaixo da superfície do esmalte erodido. A análise morfológica foi realizada utilizando microscopia eletrônica de varredura (MEV) (n = 3). Os dados foram analisados estatisticamente por meio do modelo ANOVA 2 fatores para medidas repetidas, com subsequente comparação entre os diferentes tratamentos (? = 0,05). A ciclagem ácida realizada no presente estudo provocou perda de esmalte significativamente maior (p < 0,001) nos grupos GC (4,8 ± 1,4A ?m) e GL (4,4 ± 2,0A ?m). Não houve diferença estatística entre a perda de superfície nos grupos GF (1,9 ± 0,9B ?m) e GLF (1,7 ± 0,9B ?m). Os resultados de ultramicrodureza transversal mostraram que as amostras tratadas com a solução fluoretada (grupo GF) apresentaram uma zona parcialmente desmineralizada com média de dureza semelhante às amostras do grupo que não recebeu qualquer tipo de tratamento (grupo GC), com ambos os grupos apresentando média de dureza significativamente maior que os grupos que foram irradiados com o laser de CO2 (GL e GLF) (p < 0,001). As micrografias mostraram que as características morfológicas superficiais do esmalte nos grupos irradiados com laser de CO2 apresentaram-se semelhantes nos grupos GL e GLF, verificando-se a presença de áreas sugestivas de derretimento, resolidificação, microporos e microtrincas, sem evidências de precipitados fluoretados no grupo GFL. Uma camada amorfa pôde ser observada nas superfícies de esmalte tratadas apenas com a solução fluoretada contendo estanho. Pode-se concluir que o uso do enxaguatório bucal fluoretado contendo estanho (500 ppm F-, 800 ppm Sn2+, pH = 4,5) mostrou potencial de prevenção da erosão de esmalte dental. A irradiação do esmalte dental com o laser associado à solução fluoretada mostrou-se eficaz, mas seu efeito não foi sinérgico. O laser de CO2 (9,6 ?m), nos parâmetros utilizados, não foi capaz de prevenir a erosão em esmalte causada por ácido cítrico. / Although several studies have shown promising results using the AmF/NaF/SnCl2 solution in preventing the erosion of dental enamel, there are no reports of their association with the irradiation of the substrate with the CO2 laser, working at 9.6 ?m. Thus, this study aimed to evaluate the potential of AmF/NaF/SnCl2 solution, associated or not to CO2 laser irradiation (4.5 J/cm2, 20 Hz, 20 ?s), to prevent erosion on dental enamel. Thirteen volunteers participated in this 2-phase (4 days each), crossover study, where 04 treatments were tested using replicas (n = 13): GC - no treatment (negative control); GF - AmF/NaF/SnCl2 solution (positive control); GL - CO2 laser irradiation (9.6 ?m); GLF - CO2 laser irradiation associated with AmF/NaF/SnCl2 solution. The volunteers wore removable intra-buccal appliances containing eight bovine enamel samples. In the first phase, seven volunteers used intra-oral appliances containing samples of groups GC and GL and 6 volunteers, appliances containing samples of groups GF and GLF. In the second phase volunteers were crossed over, allowing all experimental groups were evaluated in the buccal environment of the 13 volunteers. Intra-buccal appliances were removed from the mouth and were exposed to a daily ex-situ erosive cycling (0.65% citric acid, pH 3.6, for 4 minutes, 2x/day) at pre-determined times. Samples were evaluated for surface loss using an optical non-contact profilometer (n = 13) for analysis of loss of mineral after the erosive challenge and a cross-sectional nanohardness test (n = 13) was carried out in order to determine the depth of demineralized area below the erosive lesion. Morphological analysis was carried out using scanning electron microscopy (SEM) (n = 3). The data were statistically analyzed by two-way ANOVA repeated measures with subsequent pairwise comparison test (? = 0.05). Erosive challenge significantly increased enamel wear (p < 0.001) in GC (4.8 ± 1.4A ?m) and GL (4.4 ± 2.0A ?m) groups. There was no significant difference between the surface loss in GF (1.9 ± 0.9B ?m) and GLF (1.7 ±0.9B ?m) groups. Data from cross-sectional nanohardness showed that samples treated with stannous fluoride solution (GF group) showed a partially demineralized zone with average hardness similar to samples in the group that did not receive any treatment (GC group), both groups had significantly higher average nanohardness than the irradiated samples (GL and GLF group) (p < 0.001). Morphologically, all CO2 laser irradiated samples resulted in similar changes, showing the presence of areas suggestive of melting, resolidification and some microcracks. No fluoride precipitates were observed in GFL groups. An amorphous layer could be observed on the surface of enamel treated with tin-containing solution alone. Within the limits of this in situ study, it can be concluded that the AmF/NaF/SnCl2 solution (500 ppm F, 800 ppm Sn2+, pH = 4.5) showed potential for prevention of dental enamel erosion. The enamel irradiation with the CO2 laser associated with the fluoride solution was effective, but its effect was not synergistic. The CO2 laser (9.6 ?m), with the parameters considered in this study, was not able to prevent the enamel erosion caused by citric acid.
3

Avaliação in vitro e in situ do potencial erosivo do suco de laranja modificado por cálcio e alguns polímeros alimentares / In vitro and in situ evaluation of the erosive potential of the orange juice modified with calcium and some food-approved polimers

Scaramucci, Taís 10 June 2011 (has links)
O objetivo deste trabalho foi avaliar in vitro e in situ o potencial erosivo do suco de laranja modificado por cálcio e alguns polímeros alimentares. Este estudo foi dividido em quatro fases. Na primeira, as seguintes substâncias: lactato de cálcio (Ca), goma xantana (XG), hexametafosfato de sódio (HMP), tripolifosfato de sódio (STP), pirofosfato de sódio (PP) e suas combinações, foram adicionadas a um suco de laranja, disponível comercialmente, criando 15 sucos modificados. O suco sem aditivos foi utilizado como controle negativo (C-), e um suco de laranja modificado com cálcio (disponível comercialmente), como controle positivo (C+). Os sucos tiveram o seu potencial erosivo avaliado com o método do pH-stat. A variável resposta foi o volume de titulador necessário para manter o pH dos sucos nos valores iniciais. Após, seis sucos foram selecionados e testados na segunda fase, com um modelo de ciclagem de erosão-remineralização. Na terceira fase, os episódios de erosão e de remineralização foram estudados independentemente. A variável resposta para essas duas fases foi a microdureza de superfície (MDS) para esmalte, e a perfilometria ótica, para esmalte e dentina. Na quarta fase, os sucos Ca, Ca+HMP e HMP, mais os controles, foram testados com um modelo de erosão in situ, crossover, cego, de 5 fases, envolvendo 10 voluntários. Em cada fase, os voluntários inseriam aparelhos palatinos contendo espécimes de esmalte na boca e, após 5min, realizavam os desafios erosivos nos tempos experimentais de 0 (controle), 10, 20 e 30min. Dois espécimes eram aleatoriamente removidos dos aparelhos, após cada tempo. A variável resposta foi a alteração da microdureza de superfície (em %). Antes dos procedimentos clínicos, em cada fase, os voluntários realizaram um teste cego de sabor, onde o suco modificado designado a aquela fase foi comparado cegamente com C-. Na primeira fase, todos os aditivos foram capazes de reduzir o potencial erosivo do suco, com exceção da adição de XG isoladamente. Na segunda fase, não houve perda de estrutura de esmalte detectável quando Ca, HMP e Ca+HMP foram adicionados ao suco; XG, STP e PP apresentaram uma perda de esmalte similar ao grupo C-. Ca+HMP apresentaram a menor redução da MDS, seguido por Ca; todos os outros grupos apresentaram uma redução da MDS similar ao grupo C-. Para dentina, somente Ca+HMP apresentou uma redução na perda de estrutura. Na terceira fase, Ca, HMP e Ca+HMP protegeram contra erosão e nenhum dos compostos interferiu com o processo de remineralização. Na quarta fase, Ca e Ca+HMP reduziram a erosão, sem diferenças significantes entre esses grupos; o HMP não apresentou efeito protetor. 5/10 voluntários notaram uma diferença no sabor de C+, 4/10 para Ca e 2/10 para C-. Conclui-se que, in vitro, tanto o HMP, quanto o Ca, nas concentrações testadas, reduziram a erosão causada pelo suco em esmalte e a combinação desses aditivos aumentou seus efeitos protetores. Para dentina, apenas a combinação Ca+HMP reduziu a erosão. In situ, Ca reduziu a erosão provocada pelo suco, porém, alterações no sabor foram notadas por alguns voluntários. HMP não apresentou efeito protetor. / The aim of this study was to evaluate in vitro and in situ the erosive potential of the orange juice modified with calcium and some food-approved polymers. This study was divided into four fases. In the first, the following substances: calcium lactate (Ca), xanthan gum (XG), sodium hexametaphosphate (HMP), sodium trypoliphosphate (STP), sodium pyrophosphate (PP) and some of their combinations were added to a commercially available orange juice, creating 15 modified juices. The juice without additives was used as a negative control (C-) and a commercially available calcium-modified juice as positive control (C+). These juices were tested for erosive potential using pH-stat. The response variable was the volume of titrant needed to maintain the pH of the juices in their baseline values. After, six selected juices were tested in the second phase with an erosion-remineralization cycling model. In the third phase, the erosion and remineralization episodes were tested independently. The reponse variable for these phases was surface microhardness for enamel and optical perfilometry for enamel and dentin. In the fourth phase, the juices Ca, Ca+HMP and HMP, plus the controls were tested with an erosion in situ model, consisting of a 5-phase, single blind crossover clinical trial involving 10 subjects. In each phase, subjects inserted custom-made palatal appliances containing enamel specimens in the mouth and, after 5 min equilibration period, performed erosive challenges for total of 0 (control), 10, 20, and 30 min. Two specimens were randomly removed from the appliances, after each challenge period. The reponse variable was the percentage of surface microhardness change. Before the procedures, in each phase, the subjects performed a taste test, where the modified juice assigned to that phase was blindly compared to C-. In first phase, all the additives were able to reduce the erosive potential of the juice, except the addition of XG alone. In the second phase, no detectable enamel loss was observed when Ca, HMP and Ca+HMP were added to the juice; XG, STP and PP had enamel loss similar to C-. Ca+HMP showed the lowest reduction in the surface microhardness, followed by Ca;all the other groups presented a reduction in the surface microhardness similar to C-. For dentin, only Ca+HMP reduced surface loss. In the third phase, Ca, HMP and Ca+HMP protected against erosion; and none of the tested compounds seemed to interfere with the remineralization process. In the fourth phase, Ca and Ca+HMP reduced erosion, with no difference between them. HMP did not show any protective effect. 5/10 subjects noticed a difference in the taste of C+; 4/10 for Ca; and 2 /10 for C-. In conclusion, in vitro, HMP and Ca, in the concentrations tested, reduced erosion on enamel and this effect was enhanced by their combination. For dentin, only the combination Ca+HMP caused a significant reduction. In situ, Ca reduced the erosion caused by the juice; however, taste changes were noticed by some volunteers. HMP did not show any protective effect.
4

Avaliação in vitro e in situ do potencial erosivo do suco de laranja modificado por cálcio e alguns polímeros alimentares / In vitro and in situ evaluation of the erosive potential of the orange juice modified with calcium and some food-approved polimers

Taís Scaramucci 10 June 2011 (has links)
O objetivo deste trabalho foi avaliar in vitro e in situ o potencial erosivo do suco de laranja modificado por cálcio e alguns polímeros alimentares. Este estudo foi dividido em quatro fases. Na primeira, as seguintes substâncias: lactato de cálcio (Ca), goma xantana (XG), hexametafosfato de sódio (HMP), tripolifosfato de sódio (STP), pirofosfato de sódio (PP) e suas combinações, foram adicionadas a um suco de laranja, disponível comercialmente, criando 15 sucos modificados. O suco sem aditivos foi utilizado como controle negativo (C-), e um suco de laranja modificado com cálcio (disponível comercialmente), como controle positivo (C+). Os sucos tiveram o seu potencial erosivo avaliado com o método do pH-stat. A variável resposta foi o volume de titulador necessário para manter o pH dos sucos nos valores iniciais. Após, seis sucos foram selecionados e testados na segunda fase, com um modelo de ciclagem de erosão-remineralização. Na terceira fase, os episódios de erosão e de remineralização foram estudados independentemente. A variável resposta para essas duas fases foi a microdureza de superfície (MDS) para esmalte, e a perfilometria ótica, para esmalte e dentina. Na quarta fase, os sucos Ca, Ca+HMP e HMP, mais os controles, foram testados com um modelo de erosão in situ, crossover, cego, de 5 fases, envolvendo 10 voluntários. Em cada fase, os voluntários inseriam aparelhos palatinos contendo espécimes de esmalte na boca e, após 5min, realizavam os desafios erosivos nos tempos experimentais de 0 (controle), 10, 20 e 30min. Dois espécimes eram aleatoriamente removidos dos aparelhos, após cada tempo. A variável resposta foi a alteração da microdureza de superfície (em %). Antes dos procedimentos clínicos, em cada fase, os voluntários realizaram um teste cego de sabor, onde o suco modificado designado a aquela fase foi comparado cegamente com C-. Na primeira fase, todos os aditivos foram capazes de reduzir o potencial erosivo do suco, com exceção da adição de XG isoladamente. Na segunda fase, não houve perda de estrutura de esmalte detectável quando Ca, HMP e Ca+HMP foram adicionados ao suco; XG, STP e PP apresentaram uma perda de esmalte similar ao grupo C-. Ca+HMP apresentaram a menor redução da MDS, seguido por Ca; todos os outros grupos apresentaram uma redução da MDS similar ao grupo C-. Para dentina, somente Ca+HMP apresentou uma redução na perda de estrutura. Na terceira fase, Ca, HMP e Ca+HMP protegeram contra erosão e nenhum dos compostos interferiu com o processo de remineralização. Na quarta fase, Ca e Ca+HMP reduziram a erosão, sem diferenças significantes entre esses grupos; o HMP não apresentou efeito protetor. 5/10 voluntários notaram uma diferença no sabor de C+, 4/10 para Ca e 2/10 para C-. Conclui-se que, in vitro, tanto o HMP, quanto o Ca, nas concentrações testadas, reduziram a erosão causada pelo suco em esmalte e a combinação desses aditivos aumentou seus efeitos protetores. Para dentina, apenas a combinação Ca+HMP reduziu a erosão. In situ, Ca reduziu a erosão provocada pelo suco, porém, alterações no sabor foram notadas por alguns voluntários. HMP não apresentou efeito protetor. / The aim of this study was to evaluate in vitro and in situ the erosive potential of the orange juice modified with calcium and some food-approved polymers. This study was divided into four fases. In the first, the following substances: calcium lactate (Ca), xanthan gum (XG), sodium hexametaphosphate (HMP), sodium trypoliphosphate (STP), sodium pyrophosphate (PP) and some of their combinations were added to a commercially available orange juice, creating 15 modified juices. The juice without additives was used as a negative control (C-) and a commercially available calcium-modified juice as positive control (C+). These juices were tested for erosive potential using pH-stat. The response variable was the volume of titrant needed to maintain the pH of the juices in their baseline values. After, six selected juices were tested in the second phase with an erosion-remineralization cycling model. In the third phase, the erosion and remineralization episodes were tested independently. The reponse variable for these phases was surface microhardness for enamel and optical perfilometry for enamel and dentin. In the fourth phase, the juices Ca, Ca+HMP and HMP, plus the controls were tested with an erosion in situ model, consisting of a 5-phase, single blind crossover clinical trial involving 10 subjects. In each phase, subjects inserted custom-made palatal appliances containing enamel specimens in the mouth and, after 5 min equilibration period, performed erosive challenges for total of 0 (control), 10, 20, and 30 min. Two specimens were randomly removed from the appliances, after each challenge period. The reponse variable was the percentage of surface microhardness change. Before the procedures, in each phase, the subjects performed a taste test, where the modified juice assigned to that phase was blindly compared to C-. In first phase, all the additives were able to reduce the erosive potential of the juice, except the addition of XG alone. In the second phase, no detectable enamel loss was observed when Ca, HMP and Ca+HMP were added to the juice; XG, STP and PP had enamel loss similar to C-. Ca+HMP showed the lowest reduction in the surface microhardness, followed by Ca;all the other groups presented a reduction in the surface microhardness similar to C-. For dentin, only Ca+HMP reduced surface loss. In the third phase, Ca, HMP and Ca+HMP protected against erosion; and none of the tested compounds seemed to interfere with the remineralization process. In the fourth phase, Ca and Ca+HMP reduced erosion, with no difference between them. HMP did not show any protective effect. 5/10 subjects noticed a difference in the taste of C+; 4/10 for Ca; and 2 /10 for C-. In conclusion, in vitro, HMP and Ca, in the concentrations tested, reduced erosion on enamel and this effect was enhanced by their combination. For dentin, only the combination Ca+HMP caused a significant reduction. In situ, Ca reduced the erosion caused by the juice; however, taste changes were noticed by some volunteers. HMP did not show any protective effect.

Page generated in 0.0534 seconds