• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • Tagged with
  • 13
  • 13
  • 11
  • 9
  • 8
  • 8
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A process for function based architecture definition and modeling

Armstrong, Michael James. January 2008 (has links)
Thesis (M. S.)--Aerospace Engineering, Georgia Institute of Technology, 2008. / Committee Chair: Mavris, Dimitri; Committee Member: Garcia, Elena; Committee Member: Soban, Danielle. Part of the SMARTech Electronic Thesis and Dissertation Collection.
2

Development of performance functions for economic performance assessment of process control systems

Wei, Donghui 10 June 2010 (has links)
Economic performance assessment (EPA) of control systems is receiving increasing attention in both academia and industry. It addresses the estimation of the potential benefits resulting from control upgrade projects and monitoring and improvement of economic performance of the control system. Economic performance of control systems can often be related to crucial controlled variables dynamically and when controlled variables move away from an optimal operating point either more profit will be made or more cost will be incurred. This relation can be modelled by performance functions (PFs). When the multivariate nature of a process’s economic model is not considered, PFs of different controlled variables are referred to as individual performance functions. Otherwise, PFs of dependent controlled variables are referred to as joint performance functions. PFs play an important role in the latest techniques of EPA. There appears, however, to be no systematic method for developing PFs. The lack of such a method restrains further research into EPA, as without well-established PFs an EPA cannot be conducted smoothly and therefore cannot effectively support decision-making for management. The development of PFs is a bottleneck in the further research into EPA. Furthermore, the multivariate nature of processes has not been taken into account sufficiently as far as the relevant literature is concerned, which hampers the accuracy of PFs and accordingly the accuracy of economic assessment results. The contributions of this thesis lie in the following aspects: • A methodology for developing PFs is proposed, based on the PF development for an electric arc furnace, a grinding mill circuit and a stage of a bleach plant. • A comprehensive case study of an EPA of three controllers of a grinding mill circuit is conducted using a newly published framework to show the significance of PFs and how to perform an EPA systematically. • The current practice and guidelines on the control and functional/economic performance assessment of grinding mill circuits are captured using a survey study. The multivariate nature of an electric arc furnace’s economic model is investigated and joint performance functions are built based on individual performance functions. A multivariate economic assessment is conducted that shows how joint performance functions can help to provide a more accurate estimate of the economic performance of a controlled process. A web-based survey study on grinding mill circuits in mineral processing industries is conducted. One of its objectives is to obtain general PFs of grinding circuits. The survey results provide instructive insight into the PFs of grinding circuits. Furthermore, an in-depth literature review is conducted and the relationship between the product’s particle size distribution of grinding mill circuits and mineral recovery in downstream flotation circuits is revealed. The PFs of a grinding mill circuit being considered are formed, based on the survey results and literature study. An investigation into the PF development of a stage of a bleach plant is performed and crucial ideas used for their development are abstracted. A methodology for developing PFs for the EPA of control systems is then proposed by synthesising the methods used in the PF development described above. This methodology mainly includes the following stages: Stage 1: Determine information required for PF development. • Process operation and control understanding. • Process economics understanding. Stage 2: Gain required information on PF development. • PF-related information elicitation using survey research. • PF-related information available in the literature, including textbooks, journal papers, conference papers. • PF-related information from plant tests. Stage 3: Obtain suitable performance measures. Stage 4: Make suitable assumptions. Stage 5: Determine PFs. Stage 6: Develop Joint PFs. An economic assessment of three controllers (a nonlinear model predictive controller, a decentralized controller and three single-loop proportional-integral-derivative controllers) of the considered grinding mill circuit is conducted, using an EPA framework published recently to show the central role of PFs in the EPA and how to perform an EPA systematically. The circuit’s PFs, developed as described above, are used for the assessment. The EPA also shows that the improvement in the economic performance with the nonlinear model predictive controller mainly results from the improvement of the operating point and the controlled variables’ variation reduction only contributes a small part to the overall improvement, due to the characteristic of the PF of the circuit’s product particle size distribution. In addition, a web-based survey study is conducted and the current practice and guidelines on the control and functional/economic performance assessment of grinding mill circuits are captured. The questionnaire used for the study includes five segments. The first part identifies the respondents and the second part is intended to obtain background information on the milling circuits. The third part concerns the choice of key process variables and their economic impact. Part four involves the control of milling circuits and control loop performance and part five covers economic issues. / Thesis (PhD)--University of Pretoria, 2010. / Electrical, Electronic and Computer Engineering / unrestricted
3

SEGMENTATION STRATEGIES FOR ROAD SAFETY ANALYSIS

Green, Eric R. 01 January 2018 (has links)
This dissertation addresses the relationship between roadway segment length and roadway attributes and their relationship to the efficacy of Safety Performance Function (SPF) models. This research focuses on three aspects of segmentation: segment length, roadway attributes, and combinations of the two. First, it is shown that choice of average roadway segment length can result in markedly different priority lists. This leads to an investigation of the effect of segment length on the development of SPFs and identifies average lengths that produce the best-fitting SPF. Secondly, roadway attributes are filtered to test the effect that homogeneity has on SPF development. Lastly, a combination of segment length and attributes are examined in the same context. In the process of conducting this research a tool was developed that provides objective goodness-of-fit measures as well as visual depictions of the model. This information can be used to avoid things like omitted variable bias by allowing the user to include other variables or filter the database. This dissertation also discusses and offers examples of ways to improve the models by employing alternate model forms. This research revealed that SPF development is sensitive to a variety of factors related to segment length and attributes. It is clear that strict base condition filters based on the most predominant roadway attributes provide the best models. The preferred functional form was shown to be dependent on the segmentation approach (fixed versus variable length). Overall, an important step in SPF development process is evaluation and comparison to determine the ideal length and attributes for the network being analyzed (about 2 miles or 3.2 km for Kentucky parkways). As such, a framework is provided to help safety professionals employ the findings from this research.
4

Development of Safety Performance Functions for SafetyAnalyst Applications in Florida

Lu, Jinyan 26 March 2013 (has links)
In 2010, the American Association of State Highway and Transportation Officials (AASHTO) released a safety analysis software system known as SafetyAnalyst. SafetyAnalyst implements the empirical Bayes (EB) method, which requires the use of Safety Performance Functions (SPFs). The system is equipped with a set of national default SPFs, and the software calibrates the default SPFs to represent the agency’s safety performance. However, it is recommended that agencies generate agency-specific SPFs whenever possible. Many investigators support the view that the agency-specific SPFs represent the agency data better than the national default SPFs calibrated to agency data. Furthermore, it is believed that the crash trends in Florida are different from the states whose data were used to develop the national default SPFs. In this dissertation, Florida-specific SPFs were developed using the 2008 Roadway Characteristics Inventory (RCI) data and crash and traffic data from 2007-2010 for both total and fatal and injury (FI) crashes. The data were randomly divided into two sets, one for calibration (70% of the data) and another for validation (30% of the data). The negative binomial (NB) model was used to develop the Florida-specific SPFs for each of the subtypes of roadway segments, intersections and ramps, using the calibration data. Statistical goodness-of-fit tests were performed on the calibrated models, which were then validated using the validation data set. The results were compared in order to assess the transferability of the Florida-specific SPF models. The default SafetyAnalyst SPFs were calibrated to Florida data by adjusting the national default SPFs with local calibration factors. The performance of the Florida-specific SPFs and SafetyAnalyst default SPFs calibrated to Florida data were then compared using a number of methods, including visual plots and statistical goodness-of-fit tests. The plots of SPFs against the observed crash data were used to compare the prediction performance of the two models. Three goodness-of-fit tests, represented by the mean absolute deviance (MAD), the mean square prediction error (MSPE), and Freeman-Tukey R2 (R2FT), were also used for comparison in order to identify the better-fitting model. The results showed that Florida-specific SPFs yielded better prediction performance than the national default SPFs calibrated to Florida data. The performance of Florida-specific SPFs was further compared with that of the full SPFs, which include both traffic and geometric variables, in two major applications of SPFs, i.e., crash prediction and identification of high crash locations. The results showed that both SPF models yielded very similar performance in both applications. These empirical results support the use of the flow-only SPF models adopted in SafetyAnalyst, which require much less effort to develop compared to full SPFs.
5

Safety Improvements On Multilane Arterials A Before And After Evaluation Using The Empirical Bayes Method

Devarasetty, Prem Chand 01 January 2009 (has links)
This study examines the safety effects of the improvements made on multi-lane arterials. The improvements were divided into two categories 1) corridor level improvements, and 2) intersection improvements. Empirical Bayes method, which is one of the most accepted approaches for conducting before-after evaluations, has been used to assess the safety effects of the improvement projects. Safety effects are estimated not only in terms of all crashes but also rear-end (most common type) as well as severe crashes (crashes involving incapacitating and/or fatal injuries) and also angle crashes for intersection improvements. The Safety Performance Functions (SPFs) used in this study are negative binomial crash frequency estimation models that use the information on ADT, length of the segments, speed limit, and number of lanes for corridors. And for intersections the explanatory variables used are ADT, number of lanes, speed limit on major road, and number of lanes on the minor road. GENMOD procedure in SAS was used to develop the SPFs. Corridor SPFs are segregated by crash groups (all, rear-end, and severe), length of the segments being evaluated, and land use (urban, suburban and rural). The results of the analysis show that the resulting changes in safety following corridor level improvements vary widely. Although the safety effect of projects involving the same type of improvement varied, the overall effectiveness of each of the corridor level improvements were found to be positive in terms of reduction in crashes of each crash type considered (total, severe, and rear-end) except for resurfacing projects where the total number of crashes slightly increased after the roadway section is resurfaced. Evaluating additional improvements carried out with resurfacing activities showed that all (other than sidewalk improvements for total crashes) of them consistently led to improvements in safety of multilane arterial sections. It leads to the inference that it may be a good idea to take up additional improvements if it is cost effective to do them along with resurfacing. It was also found that the addition of turning lanes (left and/or right) and paving shoulders were two improvements associated with a project�s relative performance in terms of reduction in rear-end crashes. No improvements were found to be associated with a resurfacing project�s relative performance in terms of changes in (i.e., reducing) severe crashes. For intersection improvements also the individual results of each project varied widely. Except for adding turn lane(s) all other improvements showed a positive impact on safety in terms of reducing the number of crashes for all the crash types (total, severe, angle, and rear-end) considered. Indicating that the design guidelines for this work type have to be revisited and safety aspect has to be considered while implementing them. In all it can be concluded that FDOT is doing a good job in selecting the sites for treatment and it is very successful in improving the safety of the sections being treated although the main objective(s) of the treatments are not necessarily safety related.
6

Reducing Highway Crashes with Network-Level Continuous Friction Measurements

McCarthy, Ross James 16 December 2019 (has links)
When a vehicle changes speed or direction, the interaction between the contacting surfaces of the tire and the pavement form frictional forces. The pavement's contribution to tire-pavement friction is referred to as skid resistance and is provided by pavement microtexture and macrotexture. The amount of skid resistance depreciates over time due to the polishing action of traffic, and for this reason, the skid resistance should be monitored with friction testing equipment. The equipment use one of four test methods to measure network-level friction: ASTM E 274 locked-wheel, ASTM E 2340 fixed-slip technique, ASTM E 1859 variable-slip technique, and sideways-force coefficient (SFC) technique. The fixed-slip, variable-slip, and SFC techniques are used in continuous friction measurement equipment (CFME). In the United States, skid resistance is traditionally measured with a locked-wheel skid trailer (LWST) equipped with either a ASTM E 501 ribbed or a ASTM E 524 smooth 'no tread' tire. Since the LWST fully-locks the test wheel to measure friction, it is only capable of spot testing tangent sections of roadway. By contrast, the remaining three test methods never lock their test wheels and, therefore, they can collect friction measurements continuously on all types of roadway, including curves and t-intersections. For this reason, highway agencies in the U.S. are interested in transitioning from using a LWST to using one of three continuous methods. This dissertation explores the use of continuous friction measurements, collected with a Sideways-force Coefficient Routine Investigation Machine (SCRIM), in a systemic highway safety management approach to reduce crashes that result in fatalities, injuries, and property damage only. The dissertation presents four manuscripts. In the first manuscript, orthogonal regression is used to develop models for converting between friction measurements with a SCRIM and LWST with both a ribbed and smooth tire. The results indicated that the LWST smooth tire measured friction with greater sensitivity to changes in macrotexture than the SCRIM and LWST ribbed tire. The SCRIM also had greater correlation to the LWST ribbed tire than the LWST smooth tire. The second investigation establishes the relationship between friction measured with a SCRIM and the risk of crashes on dry and wet pavement surfaces. The results of this showed that increasing friction decreases both dry and wet pavement crashes; however, friction was found to have greater impact in wet conditions. Due to the negative relationship between friction and crashes, eventually there will be a point where further losses in friction can result in a rapid increase in crash risk. This point can be identified with a friction threshold known as an investigatory level. When measured friction is at or below the investigatory level, an in- and out-of-field investigation is required to determine whether a countermeasure is necessary to improve safety. The third manuscript proposes a statistical regression approach for determining investigatory levels. Since this approach relies on statistical regression, the results are objective and should be the same for any analyst reviewing the same data. The investigatory levels can be used in a systemic approach that identifies locations where crashes can be reduced based on a benefit-cost analysis of surface treatments. Last, the forth manuscript demonstrates a benefit-cost analysis that selects surface treatments based on crash reductions predicted with continuous friction measurements. / Doctor of Philosophy / When a vehicle changes speed or direction, the tires slide over the pavement surface, creating friction that produces the traction that is necessary for the vehicle to change speed or direction. Friction can diminish when water, dust, and other contaminants are present, or over time due to traffic. Over time, the loss in friction causes the risk of a crash to increase. However, this relationship is non-linear, and therefore, eventually there will be a point where further losses in friction can cause a rapid increase in crash risk. For this reason, the pavement friction is monitored with equipment that slides a rubber tire with known properties over a pavement surface. Since friction is lowest when the pavement is wet, the equipment applies a film of water to the surface directly in front of the sliding tire. There are different types of equipment used to measure friction. The physical designs of the equipment and their method of testing may be different. For example, some devices measure friction by sliding a wheel that is angled away from the path of the vehicle, while others slide a wheel that is aligned with the vehicle but reduced in speed compared to the vehicle. The factors that make the equipment different can affect the quantity of friction that is measured, as well as the timing between each consecutive measurement. The advantages that some equipment offers can entice highway agencies to transition from a pre-existing system to a more advantageous system. Before transitioning, the measurements from the two types of equipment should be compared directly to determine their correlation. Statistical regression can also be used to develop models for converting the measurements from the new equipment to the units of the current, which can help engineers interpret the measurements, and to integrate them into an existing database. The presence of water on a pavement surface can result in a temporary loss of friction that can increase the risk of a crash beyond the normal, dry pavement state. This does not guarantee that dry pavements have sufficient friction as is suggested in most literature. In this dissertation, the relationship between friction and the risk of a crash on dry and wet pavements are evaluated together. The results show that increasing friction can decrease the crash risk on both dry and wet pavement surfaces. The amount of friction that is needed to maintain low crash risk is not the same for every section of road. Locations such as approaches to curves or intersections can increase the risk of a crash, and for that reason, some sections of roadway require more friction than others. Minimum levels of friction called investigatory levels can be established to trigger an in- and out-of-field investigation to determine whether improving friction can improve safety when the measured friction is at or below a specific value. This dissertation proposes a methodology for determining the investigatory levels of friction for different sections of roadway using a statistical regression approach. The investigatory levels are then used to identify locations where pavement surface treatments can reduce crashes based on a benefit-cost analysis. Last, the ability of a surface treatment to reduce crashes is evaluated using another statistical regression approach that predicts changes in crash risk using friction measurements. Since there are several treatment options, a treatment is selected based on estimated cost and benefit.
7

Development of Safety Performance Functions For Two-Lane Rural Highways in the State of Ohio

Faden, Abdulrahman Khalid 29 June 2020 (has links)
No description available.
8

Calibration of the Highway Safety Manual Safety Performance Function and Development of Jurisdiction-Specific Models for Rural Two-Lane Two-Way Roads in Utah

Brimley, Bradford Keith 17 March 2011 (has links) (PDF)
This thesis documents the results of the calibration of the Highway Safety Manual (HSM) safety performance function (SPF) for rural two-lane two-way roadway segments in Utah and the development of new SPFs using negative binomial and hierarchical Bayesian modeling techniques. SPFs estimate the safety of a roadway entity, such as a segment or intersection, in terms of number of crashes. The new SPFs were developed for comparison to the calibrated HSM SPF. This research was performed for the Utah Department of Transportation (UDOT).The study area was the state of Utah. Crash data from 2005-2007 on 157 selected study segments provided a 3-year observed crash frequency to obtain a calibration factor for the HSM SPF and develop new SPFs. The calibration factor for the HSM SPF for rural two-lane two-way roads in Utah is 1.16. This indicates that the HSM underpredicts the number of crashes on rural two-lane two-way roads in Utah by sixteen percent. The new SPFs were developed from the same data that were collected for the HSM calibration, with the addition of new data variables that were hypothesized to have a significant effect on crash frequencies. Negative binomial regression was used to develop four new SPFs, and one additional SPF was developed using hierarchical (or full) Bayesian techniques. The empirical Bayes (EB) method can be applied with each negative binomial SPF because the models include an overdispersion parameter used with the EB method. The hierarchical Bayesian technique is a newer, more mathematically-intense method that accounts for high levels of uncertainty often present in crash modeling. Because the hierarchical Bayesian SPF produces a density function of a predicted crash frequency, a comparison of this density function with an observed crash frequency can help identify segments with significant safety concerns. Each SPF has its own strengths and weaknesses, which include its data requirements and predicting capability. This thesis recommends that UDOT use Equation 5-11 (a new negative binomial SPF) for predicting crashes, because it predicts crashes with reasonable accuracy while requiring much less data than other models. The hierarchical Bayesian process should be used for evaluating observed crash frequencies to identify segments that may benefit from roadway safety improvements.
9

Crash Prediction Modeling for Curved Segments of Rural Two-Lane Two-Way Highways in Utah

Knecht, Casey Scott 01 December 2014 (has links) (PDF)
This thesis contains the results of the development of crash prediction models for curved segments of rural two-lane two-way highways in the state of Utah. The modeling effort included the calibration of the predictive model found in the Highway Safety Manual (HSM) as well as the development of Utah-specific models developed using negative binomial regression. The data for these models came from randomly sampled curved segments in Utah, with crash data coming from years 2008-2012. The total number of randomly sampled curved segments was 1,495. The HSM predictive model for rural two-lane two-way highways consists of a safety performance function (SPF), crash modification factors (CMFs), and a jurisdiction-specific calibration factor. For this research, two sample periods were used: a three-year period from 2010 to 2012 and a five-year period from 2008 to 2012. The calibration factor for the HSM predictive model was determined to be 1.50 for the three-year period and 1.60 for the five-year period. These factors are to be used in conjunction with the HSM SPF and all applicable CMFs. A negative binomial model was used to develop Utah-specific crash prediction models based on both the three-year and five-year sample periods. A backward stepwise regression technique was used to isolate the variables that would significantly affect highway safety. The independent variables used for negative binomial regression included the same set of variables used in the HSM predictive model along with other variables such as speed limit and truck traffic that were considered to have a significant effect on potential crash occurrence. The significant variables at the 95 percent confidence level were found to be average annual daily traffic, segment length, total truck percentage, and curve radius. The main benefit of the Utah-specific crash prediction models is that they provide a reasonable level of accuracy for crash prediction yet only require four variables, thus requiring much less effort in data collection compared to using the HSM predictive model.
10

Safety Evaluation of Active Traffic Management Strategies on Freeways by Short-Term Crash Prediction Models

Hasan, Md Tarek 01 January 2023 (has links) (PDF)
Traditional crash frequency prediction models cannot capture the temporal effects of traffic characteristics due to the high level of data aggregation. Also, this approach is less suitable to address the crash risk for active traffic management strategies that typically operate for short-time intervals. Hence, this research proposes short-term crash prediction models for traffic management strategies such as Variable Speed Limit (VSL)/Variable Advisory Speed (VAS), and Part-time Shoulder Use (PTSU). By using high-resolution traffic detectors and VSL/VAS operational data, short-term Safety Performance Functions (SPFs) are estimated at weekday hourly and peak period aggregation levels. The results indicate that the short-term SPFs could capture various crash contributing factors and safety aspects of VSL/VAS more effectively than the traditional highly aggregated Average Annual Daily Traffic (AADT)-based approach. The study also investigates the safety effectiveness of VSL/VAS for different types and severity levels of traffic crashes. The results specify that the VSL/VAS system is effective in reducing rear-end crashes in the Multivariate Poisson Lognormal (MVPLN) crash type model as well as Property Damage Only (PDO) and C (non-incapacitating) crashes in the MVPLN crash severity model. Recommendations include deploying the VSL/VAS system combined with other traffic management strategies, strong enforcement policies, and drivers' compliance to increase the effectiveness of this strategy. Further, this research estimates the Random Parameters Negative Binomial-Lindley (RPNB-L) model for PTSU sections and provides valuable insights on potential crash contributing factors related to PTSU operation, design elements, and high-risk areas. Last, the study proposes a novel integrated crash prediction approach for freeway sections with combined traffic management strategies. By incorporating historical safety conditions from SPFs, real-time crash prediction performance could be improved as a part of proactive traffic management systems. The findings could assist transportation agencies, policymakers, and practitioners in taking appropriate countermeasures for preventing and reducing crash occurrence by incorporating safety aspects while implementing traffic management strategies on freeways.

Page generated in 0.0926 seconds